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ABSTRACT 
 
On the 16th of April 2016, a Mw 7.8 earthquake with a minor tsunami impacted coastal Ecuador, 
being the most devastating seismic event registered in northern South America in this century so far. 
Three hours before, an unusual increase of the environmental radiation level was registered at 222 km 
distance from the epicenter. Trough this study, we have been able to achieve an undeniable relation 
between such type of anomalies of geological origin and the seismic activity in Ecuador, solving thus 
the uncertainties presented in related works around this clear earthquake precursor. In this sense, our 
results demonstrate a full correlation in earthquake detection, reducing also the uncertainty window to 
less than a few hours.  
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1. INTRODUCTION 
 
The deadliest of all natural hazards by death toll are earthquakes (Kahn, 2005; Anbarci et al., 2005; 
Raschky, 2008; Marano et al., 2010; Holzer and Savage, 2013). There are, at least one dozen of 
known earthquakes, which claimed more than hundred thousand lives, reaching up to more than 700 
thousand in two single events in China (Butler et al., 1979; Chen, 1988; Gang, 1989; Hou et al., 1998; 
Gupta et al., 2001). Frequencies of seismic events have been studied by a variety of authors 
(McGuire, 1995; Shome et al., 1998; Ruff and Kanamori, 1980; McCaffrey, 2008). However, the 
most accepted data base is of the National Earthquake Information Center of the United States 
Geological Survey, where there are annually in average more than 1300 seismic events registered 
being stronger than magnitudes of 5, more than 130 stronger than magnitudes of 6 or higher, and up to 
20 earthquakes with a magnitude of higher than 7. Practically all earthquakes with magnitudes higher 
than 6 being close to settlements or cities leave fatalities. There is a high amount of studies, which 
attempt to predict earthquakes (Scholz et al., 1973; Rikitake, 1968; Aki, 1981; Smith, 1990; Varotsos 
and Lazaridou, 1991; Geller, 1997; Keilis-Borok, 2002; Johnston et al., 2006) and try to be able to 
identify pre-monitoring signals (Allegre et al., 1982; Asteriadis and Livieratos, 1989; Smith, 1998; 
Sidorin, 2003; Freund, 2007; Cicerone et al., 2009; Freund et al., 2009; Akhoondzadeh et al., 2010; 
Pulinets and Ouzounov, 2011; Vigny et al., 2011; Yao et al., 2012; Tramutoli et al., 2013; Eleftheriou 
et al., 2016). Such studies may allow the installation of an early warning system, which in turn 
facilitates in even short time to take actions and protect life, property and certain infrastructure from 
incoming destructive seismic waves (Suárez et al., 2009; Rainieri et al., 2011; Satriano et al., 2011; 
Oliveira et al., 2015). 
 
During the reactivation of the Cotopaxi volcano in central Ecuador (Toulkeridis et al., 2015), 
observations of the radioactivity determination in the environment lead to the idea, that such data may 
be able to interpret and predict the nearby occurring volcanic eruptions and also seismic events of 
certain magnitude. The main aim of our research is to establish a mechanism in which we will 
confirm a relation between the radiation of the environment and the potential prediction of strong 
seismic events, like the destructive earthquake of the 16th of April 2016 in coastal Ecuador 
(Toulkeridis et al., 2017).  
 
There are several studies related to radiation as pre-earthquake sign (Madariaga, 1977; Gokhberg et 
al., 1982; Dea et al., 1991; Serebryakova et al., 1992; Virk and Singh, 1993; Zeng et al., 1993; 
Hartzell et al., 1996; Maeda and Tokimasa, 1996; Ouzounov and Freund, 2004; Tronin et al., 2002; 
Pulinets and Dunajecka, 2007; Ni et al, 2005; Pulinets et al., 2006; Ouzounov et al., 2007). In a 
particular study, such anomalies were reported for a variety of medium to strong earthquakes such as 
the M7.9, Bhuj, Gujarat, India in 2001, the M6.8 Boumerdes, North Algeria in 2003, M6.6 Bam 
Southeastern Iran in 2003 and the M9.0 Sumatra–Andaman Islands, Northern Sumatra, being a mega 
trust event in 2004 (Ouzounov et al., 2007). The anomalous variation of the radiation has been 
determined by infrared satellite data and occurred a few days to weeks (4-20 days) prior to the main 
events (Ouzounov et al., 2007). These anomalies are speculated to have been triggered close or within 
active tectonic faults due to a complex interaction of the existing stress, electrochemical and 
thermodynamic processes between the lithosphere, hydrosphere and atmosphere as part of  
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electromagnetic phenomena related to earthquake activity (Ouzounov et al., 2007). Nevertheless, 
although the relation between radiation in seismic active areas has been observed in a variety of areas, 
this is the first time documented on ground data and with a more accurate spatio-temporal earthquake 
location.  
 
2. GEODYNAMICS AND HISTORICAL COASTAL EARTHQUAKES IN THE ECUADOR 
REGION   
 
Due to its geodynamic situation along the Pacific Rim, the coastal Ecuadorian continental platform is 
a regularly target of earthquake activity and tsunami impacts (Gusiakov, 2005; Pararas-Carayannis, 
2012; Rodriguez et al., 2016). The active continental margin and associated subduction zone between 
the oceanic Nazca Plate with the continental South American and Caribbean Plates, both separated by 
the Guayaquil-Caracas Mega Shear (Kellogg and Vega, 1995; Gutscher et al., 1999; Egbue and 
Kellog, 2010) give rise to tsunamis of tectonic as well submarine landslide origin (Shepperd and 
Moberly, 1981; Pontoise and Monfret, 2004; Ratzov et al, 2007; 2010; Ioualalen et al., 2011; Pararas-
Carayannis, 2012).  

 
Fig. 1: Geodynamic setting of Ecuador, the Galapagos Islands and the Carnegie Ridge. Adapted from 

Toulkeridis, 2013 and Rodriguez et al., 2016. 
 
A further origin of earthquakes and tsunamis has been credited to the Galápagos volcanism 
(Toulkeridis, 2011). The active Galápagos hotspot has produced several voluminous shield-volcanoes,  
 

Vol. 37, No. 1, page 36 (2018) 



	 4 

most of which are inactive due to the ESE-movement of the overlying Nazca oceanic plate (Holden 
and Dietz 1972; Toulkeridis, 2011). The main Galápagos Islands are located south of the E-W-
trending Galápagos Spreading Center, east of the N-S-trending East Pacific Rise and some 1000 km 
west of the Ecuadorian mainland. Due to the volcanic activity and the subsequent plate drifting, two 
aseismic volcanic ridges were created. The first being the Cocos Ridge is moving to the NE while the 
second, being the Carnegie Ridge, is moving to the East above the Cocos and Nazca Plates 
respectively (Harpp et al., 2003). These submarine extinct volcanic ridges are the result of 
cooling/contraction reactions of magma, as they slowly sunk below the sea surface due to the lack of 
magma supply, lithospheric movement and strong erosional processes. With time, these submarine 
volcanic ridges, as well as various microplates, have accreted on the South American continent 
(Reynaud et al., 1999; Harpp and White, 2001). Nonetheless, such aseismic ridges like the Carnegie 
Ridge become an obstacle in the oblique subduction process and may generate within the subduction 
zone a potential valve of marine earthquakes and occasionally tsunamis along the Ecuadorian coast 
(Pararas-Carayannis, 2012). The Carnegie Ridge collides towards the Ecuadorian continental margin 
with a velocity of as low as 5 cm per year at a latitude between 1°N and 2°S (Pilger, 1983). 
 
From the known record of the last two centuries, the Ecuadorian shoreline has witnessed a dozen 
times strong earthquakes and marine quakes, some of which generated tsunamis by mainly local 
origins with various intensities - one being of up to 8.8 Mw in 1906 (Rudolph and Szirtes, 1911; 
Kelleher, 1972; Beck and Ruff, 1984; Kanamori and McNally, 1982; Swenson and Beck, 1996; 
Pararas-Carayannis, 2012), while evidences of paleo-tsunami deposits are scarce (Chunga and 
Toulkeridis, 2014). Other prominent examples of earthquakes with subsequent tsunamis along the 
Ecuador–Colombia subduction zone include tsunamis in 1942 (Mw 7.8), 1958 (Mw 7.7) and 1979 
(Mw 8.2) within the 600-km long rupture area of the great 1906 event (Collot et al., 2004). While the 
1906 event caused the death of up to 1500 persons in Ecuador and Colombia with an unknown 
financial damage to the existing infrastructure, the 1979 tsunami killed in Colombia at least 807 
persons and destroyed approximately 10,000 homes, knocking out electric power and telephone lines 
(Pararas-Carayannis, 1980; USGS, 2016a).  
 
The evaluation of the last marine quakes, which generated tsunamis, suggests that the probability of a 
major or great earthquake in this margin region is enormous, especially as there must be substantial 
strain accumulation in this region (Pararas-Carayannis, 2012). Additionally, given into consideration 
that the last earthquake in 1979 did not release the amount of energy as the 1906 event, there has been 
a calculated high probability in the near future, that an earthquake within the Ecuadorian-Colombian 
trench may generate a tsunami of similar magnitude to that of 1906, which might be even more 
destructive than the one in the past, particularly if it occurs near high tide (Pararas-Carayannis, 2012). 
The potential of high losses and damage is given by the fact that the infrastructure of the fishing, 
tourism and other industries and the movement to live along the beaches, have been highly developed 
within the last decades along the Ecuadorian coasts. Based on historic known impacts of tsunamis in 
Ecuador in the last two centuries, the probability of a strike in 2015 has been of about 87% 
(Rodriguez et al., 2016). 
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3. THE EARTHQUAKE AND TSUNAMI OF 16 APRIL 2016 
 
In the late afternoon of Saturday, at 18:58:36 (UTC-05:00) local time, a devastating earthquake with a 
magnitude of 7.8 Mw impacted coastal Ecuador (USGS, 2016b). The seismic event with an epicenter 
29 km SSE of Muisne, Province of Esmeraldas (Fig. 1, 2) occurred within a depth of 21 km, killing 
663, filling tens of thousands in refugee camps and affecting some two million persons directly. In 
many aspects, the mentioned earthquake has many similarities with the earthquake of the 14th of May 
1942. Nonetheless, the resulting tsunami based most probably on a triggered submarine landslide did 
not have any remarkable impact (Toulkeridis et al., 2017). 
 

 
 

Fig. 2: Epicenter of the 7.8 Mw earthquake (red dot) and a selection of damages in the coastal area. 
Note location of Reventador, Cotopaxi and Tungurahua volcanoes as well as the station of Laso 

(black dot), where the radiation of the environment has been determined. 
 
The earthquake impacted a large part of a variety of coastal cities destroying between up to 99% of 
some close-by villages and cities, Pedernales, Jama, Chone, Portoviejo among others (Fig. 2), in 
which lines of electricity transmission, infrastructure of water supply, hospitals, schools, private and 
public buildings, main roads and highways have been severely affected or even completely destroyed. 
The costs of the damages of the mentioned infrastructure are summing up an approximate loss of 
some 3.3 billion USD (El Telegrafo, 2016; Toulkeridis et al., 2017). 
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After the mainshock, 85 aftershocks between 3.8 Mw and 6.8 Mw were recorded by USGS in 
Ecuador until May 24, last day until we have processed data. The epicenters were localized within a 
rectangle of coordinates [79.5 W - 81.5 W, 2 S - 1 N], reaching the highest magnitudes around the 
rupture zone, and 86.05% of them during the first 10 subsequent days. 
 
4. ANALYTICAL PROCEDURES 
 
A LUDLUM MODEL of the 4525 SERIESTM enabled to determine the occurrences of natural and 
artificial radioactivity in the environment close to the company NOVACERO, which provides a 
variety of steel products. In order to detect radioactivity especially in vehicles in a pass-through or 
drive-through scanning modus, the Model 4525 Radiation Portal Monitor (RPM) has been installed in 
late 2014, some 22 km SW of the Cotopaxi volcano in central Ecuador. The RPM is a system with 
sensitive gamma and optional neutron detectors for detecting small amounts of radiation. When no 
vehicle drives through the scanner, the natural background of radioactivity is measured constantly and 
simultaneously (one measurement per minute). When a radiation alarm occurs, the Supervisor and any 
Echo stations will sound an audible alert. The system determines if the alarm is a Naturally Occurring 
Radioactive Alarm (NORM). NORM consists of materials enriched with radioactive elements found 
in the environment, such as uranium, thorium, and potassium and any of their decay products such as 
radium and radon. These types of alarms are characterized as having a high background over the 
entire length of the occupancy rather than the "spike" of a typical gamma alarm. 
 
Many factors have to be considered when attempting to do this: (1) Background radiation is not 
constant. It is continuously changing due to cosmic events, weather (eg. beginning of rainstorms), and 
other influences. Oilfield pipe, hot water heaters, and industrial piping will sometimes contain scale 
that is radioactive. Most alarms are the result of NORM; (2) Medical tests that use a radioactive dye 
or tracer are yet another problem. Patients can be released from the hospital reading several thousand 
µR/hr or less than 100µSv/hr, and set off RPMs 30 m (100 ft) away; (3) A third problem is that of 
radiographers and certified welders who use a powerful radiation source to check their material or 
welds for cracks. This radiation is powerful enough to set off RPMs 3 km away.  
 
5. RESULTS AND DISCUSSION  
 
Radiation of the environment in central Ecuador has been determined almost continuously realizing 
data at every minute of the day since Mid-January of 2015 up to present day. However, most of the 
time there has been only the regular day-by-day radiation level of the environment defined as 
background radiation level (Fig. 3d) with 6200 becs per minute. This radiation of the environment 
appeared with no significant changes since the beginning of the measurements and has been changed 
only by the appearance of some seismic events, such originating by volcanic nature or fault-triggered. 
Therefore, all the main volcanic eruptions of the close-by Cotopaxi volcano during its visible 
reactivation in spring of 2015 have been registered by the RPM, prior their occurrences. Other 
temporal eruptive activity and corresponding environmental radiation inside the same time window 
originating from the Tungurahua and Reventador volcanoes in Ecuador (Global Volcanism Program, 
2016a; 2016b), corresponding craters being in a distance of 73 and 132 km from the RPM  
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respectively (Fig. 2), were not registered or identified in our data base, most probably due to their low 
intensity. Additionally, we have been detected a clear pattern in the determination of the 
environmental radiation of seismic activity in Ecuador since 2015 for all events registered by USGS 
with magnitudes above 4.9 Mw. 
 
A few hours before an earthquake generation, from 1 hour (Fig. 3a) to 5 hours (Fig. 3b), an unusual 
high level of radioactivity has been detected by the RPM, reaching levels between 6800 bec/min (Fig. 
3b; 3c) and 7465 bec/min (Fig. 3a). This behaviour is related to almost all of the earthquakes 
recorded. We have also identified the delay in the generation of the earthquake is in almost all cases 
inversely proportional to the level of radiation reached and to the duration of such anomalies.  
According to the general behavior of the precursor anomalies identified, on the early hours of the 16th 
of April in 2016, an unusual radiation level has been registered by the RPM, which we interpret as a 
clear pre-monitoring signal of a major seismic event resulting to the most devastating Earthquake of 
northern South America in this century so far. The alteration of the regular background radioactivity 
started around 15.30 p.m. and lasted for about almost two hours in which the radiation increased by 
650 bec/min, finding a peak level of 6850 bec/min some minutes after the start (Fig. 3c). After 
reaching this peak level, radiation dropped down to regular level three hours later, sinking down to 
6200 bec/min at around 18:45, some minutes prior the Earthquake of 18:58 (Fig. 3c), of which 
epicenter has been located some 222 km west-northwest of the RPM. This behavior or pattern prior a 
seismic event has been previously observed with less intense earthquakes as presented earlier (Fig. 3a; 
3b). 
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Fig. 3a-d: a) Typical pre-earthquake (5.4 Mw) radiation behaviour of the 15th of October 2015 at 2.50 

S, 78.76 W with a depth of 97,1 km (USGS, 2015); b) Typical pre-earthquake (5.1 Mw) radiation 
behaviour at the 5th of March 2016 at 1.43 S, 80.40 W with a depth of 10 km (USGS, 2016); c) Main 

7.8 Mw earthquake of the 16th of April 2016 with different radiation behaviour than regular days. 
Location of epicenter has been at 0.35 N, 79.93 W at a depth of 21 km (USGS, 2016); d) Regular 

radiation level of 24 hours of the 22nd of May 2016. 
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The most plausible origin of such radiation anomalies prior to strong earthquakes might be the result 
of a complex interaction and coupling behavior of the Lithosphere, Hydrosphere, Atmosphere and 
Ionosphere (Pulinets et al., 2000; Hayakawa and Molchanov, 2002; Ouzounov et al., 2007). The 
degree of radiation anomaly certainly depends on the intensity of the earthquake as well as local to 
regional atmospheric conditions, but will have always a direct link to the magnitude of the earthquake 
(Ouzounov et al., 2007). As such outgoing long wave earth radiation anomalies and latent increases of 
temperatures have been noticed prior several strong earthquakes (Dey et al., 2004; Cervone et al., 
2005; Pulinets et al., 2006), some of them which even generated severe tsunamis, the application of an 
early alert system may be applied in a variety of environments such as active continental rims, like the 
subduction zones around the Pacific Ocean as well as around transform fault zones, like the 
Guayaquil-Caracas Mega shear in south America or the San Andres fault in the USA, being able to 
give enough warning time in order to evacuate people from vulnerable places within an adequate 
period of time.  
 
6. CONCLUSIONS 
 
It has been highlighted the important precursor role of environmental radiation in the precise location 
of earthquakes in Ecuador. A direct application and benefit of our study may be to achieve an accurate 
early warning system based on the data presented. The radiation data demonstrate clearly undeniable 
anomalies, which allow during their development an extremely early warning time towards society 
and administrators of basic infrastructure to react ahead of a potential catastrophic seismic event. 
Nonetheless, a more spatial resolution is needed by means of a sensors array, which we propose to be 
installed based on an efficient and therefore strategic distribution in the entire country of Ecuador. 
This sensors array will provide then key information for the complex Earthquake Early Warning 
System, at which we are progressing in Ecuador. 
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