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ABSTRACT 

A numerical algorithm of solving the three-dimensional system of Navier-Stokes equations to simulate free 
surface waves and flows with gravity is presented. The main problem here is to ensure that the gravity force is 
properly accounted in the presence of discontinuities in the medium density. The task is made more 
complicated due the use of unstructured computational grids with collocated placement of unknown quantities 
and splitting algorithms based on SIMPLE-type methods. To obtain correctly the hydrostatic pressure, it is 
suggested that the contribution of the gravitational force in the equation for pressure should be distinguished 
explicitly; the latter being calculated by using the solution of the two-phase medium gravitational balance 
problem. To ensure the balance of the gravity force and the pressure gradient in the case of rest an algorithm in 
which the pressure gradient in the equation of motion is replaced by a modification considering the 
gravitational force action is suggested. This method is demonstrated by the example of tsunami wave 
propagation in the real water area of the World Ocean. 
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1.  INTRODUCTION 
 

At present, there are several methods used for modeling multiphase flows with a free surface, which 
differ in the way the latter is calculated. The first method is based on the ‘Lagrangian’ approach, in 
which a free surface is tracked either by moving the grid nodes or by particles (Shuvalov et al., 2012). 
The second method is based on the ‘Euler’ approach, in which special markers are introduced to track 
the free surface. Either particles (Lucy, 1977) or spatial marker functions (Harlow and Welch, 1965; 
Daly, 1969; Hirt and Nichols, 1981) that obey the convective transfer equation can act in the role of 
the above-mentioned markers. The second method is the most applicable in practice. It uses the 
volume fraction of fluid (VOF – Volume-of-fluid) as a marker function (Hirt and Nichols, 1981; 
Ubbink, 1977). The fluid-gas system in this approach is regarded as a single one-velocity medium 
with variable physical properties. This method is easily generalized is case of arbitrary unstructured 
grids and an arbitrary number of phases (Ubbink, 1977). 
 
The determining force for waves and fluid flows with a free surface is the gravity force. The gravity 
force experiences a discontinuity on the free surface. It happens due to a sharp change in the medium 
density, resulting in a rupture in the pressure gradient magnitude, which in the case of the medium rest 
completely balanced the action of gravitational forces (Landau and Lifshitz, 1987). 
 
The construction of a numerical algorithm correctly taken into account the gravity force and the 
pressure gradient value calculations is a non-trivial task. This is especially true for grids with a 
‘collocated’ arrangement of unknown quantities, which is mainly used in practice, but leads to a weak 
coupling between the velocity and pressure fields (Ferziger and Peric, 2002; Jasak, 1996). Using the 
collocated arrangement of unknown quantities implies pressure and velocity determination in the 
same place (usually the cell center), leading to the appearance of even-odd oscillations, which can be 
eliminated by the use of the Rhie-Chow type method (Rhie and Chow, 1983). Papers (Gu et al., 1991; 
Mencinger, 2012; Majumdar, 1988) deal with the construction of a numerical algorithm ensuring the 
absence of numerical oscillations in the case of non-homogeneous gravity field. The volume force in 
the momentum conservation equation, in which the gravity force can act as the volume force, is 
analyzed in (Khrabry et al., 2010). To exclude oscillations in the velocity and pressure fields, it is 
proposed to use a correction of the Phie-Chow type (Rhie and Chow, 1983). However, this paper does 
not discuss problems with a strong discontinuity in the volume force field when arises the problem of 
the correct pressure gradient calculation, the value of which must completely balance the volume 
force when the medium is at rest. The theoretical analysis of the gravity force allowance is presented 
in (Mencinger, 2012). In addition to ideas borrowed from (Gu et al., 1991), an expression to 
interpolate the volume force and pressure on the inner faces of the computational grid, which provides 
the state of balance, is proposed. However, the considered examples demonstrate only the absence of 
oscillations in the velocity field but not the analysis of the obtained free surface forms. Similarly, 
when using arbitrary unstructured grids, the effectiveness of the algorithm is not considered. In 
(Khrabry et al., 2010), is presented an effective scheme to calculate the pressure gradient in the 
presence of gravitational forces. The scheme is based on the interpolation of the pressure gradient 
value with the medium density in the adjacent cells taken into account. This algorithm allows 
eliminating non-physical oscillations in the velocity field near the free surface. The algorithm  
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efficiency, however, is demonstrated only on the orthogonal grids whose lines are parallel to the 
gravity direction. 
 
This paper formulates a new algorithm to construct the pressure equation based on the Rhie-Chow 
method. The algorithm is constructed by replacing the gravity force by its direct discrete analogue in 
the equation. The expressions for a direct discrete analogue are formulated on the basis of hydrostatic 
approximation, which provides a correct pressure field on an arbitrary unstructured grid. To ensure 
the balance of the gravity force and the pressure gradient when the medium is at rest, an algorithm 
based on the replacement of the pressure gradient in the equation of motion by its modification 
considering the gravity action is proposed. The effectiveness of the proposed solution is explored on 
the example of the numerical simulation of tsunami wave propagation. 
 

2. THE 3D NUMERICAL ALGORITHM   
 

The VOF method unifies the continuity and the momentum conservation equations for all phases and 
solves for the resulting medium, whose properties linearly depend on the volume fraction of each 
phase. 
 
The general system of multiphase medium equations has the form (Ferziger and Peric, 2002): 
 

,   (1) 

where  is the medium resulting density,  is the resulting medium viscosity, p 

is the pressure, ui is the velocity component vector, N is the number of phases in the problem, Fj is the 
phase j volume fraction, gi is the gravity vector. In the system (1), the equation of motion is written in 
the form giving the best results in the numerical solution of problems with a free surface (Landau and 
Lifshitz, 1987). 
 
To solve the system (1), the classical SIMPLE/PISO-type splitting algorithms (Ubbink, 1997; 
Ferziger and Peric, 2002; Jasak, 1996) are used, as well as the completely implicit algorithm (Chen, 
Z.J., Przekwas, 2010; Darwish et al., 2009; Kozelkov et al., 2016b), the common feature of which is 
the derivation of the pressure equation by substituting a discrete analogue of the equation for the 
velocity into equation continuity. The present paper considers a discrete analogue of the velocity 
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calculation equation with a purpose of formulating an algorithm allowing us to obtain a correct 
hydrostatic pressure in the cell centers in the case of the density field discontinuity. With finite-
volume discretization this algorithm takes the form: 
 

,   (2) 

 
where aPP  is the diagonal coefficient for the P cell, aPN  is the  coefficient at the velocity value in the 
cell N adjacent to the face k, the summation is done over all internal faces, VP is the cell volume (Fig. 
1). 
 

 
 

Figure 1. Two adjacent cells of the computational grid 
 

From equation (2), the flow velocity is expressed as: 
 

. (3) 

 
The velocity on the face ui,k is calculated by interpolating the expression (3) from the cell centers to 
the center of the face k with the weight λk . Exception is made for the pressure gradient whose 
contribution is replaced by its direct discrete analogue (Ubbink, 1997; Mencinger, 2012). The 
obtained expression for the velocity is substituted into the discrete continuity equation (1): 
 

,                          (4) 
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where , , ui,k  is velocity on the face k, ni is the 

normal of the face k, Sk is the area of the face, the summation being carried out over all the faces of 
the cell P. The weight λk in practice is determined in various ways, for example, starting from the 
geometric distances from the cell center to the face center (Jasak, 1996), the values of the diagonal 
coefficients aPP and aNN (Rhie and Chow, 1983), or λk = 0.5 is accepted. 
 
Equation (4) determines the pressure field in the each cell centre. If the system is balanced, the 
pressure field must have a hydrostatic distribution (Landau and Lifshitz, 1987). In the presented 
equation entry for calculating the pressure (4) there is the gravity magnitude interpolated to the face – 
ρgi. In order to determine its value, which allows us to obtain a correct pressure distribution, we 
consider a model one-dimensional problem of a resting system consisting of two fluids with different 
densities in the gravitational force field (Fig. 2). 
 

 
 

Figure 2.The system balance in the gravity field  
 
In a state of balance, the velocities in the system are zero, so the equation for the pressure (4) takes the 
form: 
 

.   (5) 

 
The equation (5) shows that the term  determines the pressure drop between the cell centers P 
and N1, and the term  does the same between the cell centers P and N2. These pressure 
differences are calculated analytically (Landau and Lifshitz, 1987) under the assumption of a constant 
density within the cells: 
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,     (6) 
 
where  is the distance from the cell N1 center to face k1,  

is the distance from face k1 to the 
cell P center. 
 
Taking this into account, the equation (5) takes the form: 
 
 

.  (7) 

 
Obviously, the solution of the equation (7) leads to a pressure drop corresponding to the hydrostatic 
solution (6). 
 
In the three-dimensional case, the hydrostatic pressure drop between the adjacent cells P and N is 
given by: 
 

 .    (8) 
 
Taking into account (8), the equation (4) can be written in the form: 
 

 . (9) 

 
The equation (9) allows us to ensure the calculation of the correct hydrostatic pressure field in the cell 
centers for any method of interpolating the vector Hi on the face of the calculated model. 
 

3. THE PRESSURE GRADIENT ALGORITHM CALCULATION  
 
To balance gravity by the pressure gradient when the free surface is at rest, it is also necessary to 
ensure the correct pressure gradient calculation near the free surface. It was shown in (Mencinger, 
2012) that the pressure gradient calculation done by conventional methods, for example, by the Gauss 
method (Jasak, 1996) or by the least squares method, leads to the incorrect result due to the existence 
of a pressure field kink in the free surface. To solve this problem, (Khrabry et al., 2010) suggests 
using the Gauss method with a modified expression to interpolate the pressure value on the inner 
faces of the cell P: 

, 
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where 
 

,    (10) 

 
а ξ = cos2α, α is the angle between the normal of the face k and the direction of the gravitational 
force. This approach allows us to estimate correctly the pressure gradient near the free surface in the 
case of using an orthogonal computational grid with grid lines parallel to the direction of the 
gravitational force. However, as shown below, the use of expression (10) in the case of an 
unstructured grid leads to an unsatisfactory result. 
 
In this paper, we propose to use another method that allows obtaining good results on any 
computational grid type. The main idea of the method is as follows: it is not necessary to calculate the 
pressure gradient in order to solve the motion equation. For this purpose it is enough to calculate the 
expression representing the simultaneous contribution of the pressure gradient and the force of 
gravity. To calculate such an expression, we introduce the variable p*, which is a modified pressure 
field: 

.     (11) 

 
To calculate the right-hand side of the equation (3) with the newly introduced variable, we write the 
integral expression (11) for the cell volume P: 
 

. 

 
The transition to the surface integral gives: 
 

,     (12) 

 
where G is the antiderivative of the function ρgi, which, assuming the density inside the cells constant, 
can be written as:  
 

G = ρgiri + C, 
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where ri is the radius vector, C is an arbitrary constant. The presence of the constant C allows us to 
select the reference point of the vector ri in an arbitrary way, for the cell P we choose it in the center 
of the cell, then: 
 

.                                                             (13) 
 
The substitution of (13) into (12) and finite-volume discretization (13) yields: 
 

. 

 
The second term in the square brackets of the last expression is the contribution of hydrostatic 
pressure to the total pressure. This contribution is calculated with respect to the center of the cell P. At 
the center of the cell P it goes to zero, and at the center of the next cell N it is calculated according to 
the expression (8) which is used to compose the equation for pressure. Using the linear interpolation 
with weight λk to calculate the values on the face, we get:  
 

                 (14) 

 
The physical meaning of the expression (14) is reduced to the fact that the gravitational force ρgi 
subtracts from the pressure gradient only the part that it contributed when forming the equation for the 
pressure (9). This allows ensuring the pressure gradient and the force of gravity balance when the 
medium is at rest.  
 
The numerical results demonstrated the effectiveness of the proposed numerical algorithms for 
calculating pressure and the pressure gradient in problems with a free surface are presented in 
(Efremov et al., 2017). Numerical experiments were carried out using the LOGOS code, which is 
intended for solving conjugate three-dimensional problems of convective heat and mass transfer, 
aerodynamics and hydrodynamics on parallel computers (Betelin et al., 2014; Deryugin et al., 2015). 
The LOGOS code successfully underwent verification and showed fairly good results in a series of 
various hydrodynamic problems, including non-stationary turbulent flow (Kozelkov et al., 2015a, 
2015b, 2016b), as well as geophysical phenomena based on multiphase Navier-Stokes equations 
(Kozelkov et al., 2015c, 2015d, 2016a; 2016c). 
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4.  MODELLING OF THE 2003 MONTSERRAT TSUNAMI 
 

The presented method is of great significance when considering gravity in the numerical modeling of 
flows with a free surface. This significance is particularly evident in the modeling of tsunami wave 
propagation over large distances. In comparison with the size of the water area where tsunami wave 
propagates, the source is small enough: - a tsunami can spread thousands of kilometers, and the source 
size is only a few kilometers (for landslide tsunami) or several tens of kilometers (for tsunami of 
seismic origin). In this case, the ocean surface outside the tsunami wave zone should not fluctuate 
during the entire numerical calculation. In practice, numerical solution oscillations for a free surface 
are allowed to be much smaller than the amplitude of the propagating wave. Such numerical 
oscillations should not grow. The proposed method makes it possible to achieve a stable count and 
control of the numerical oscillation amplitude on arbitrary unstructured grids. 
 
This method was used to model the 2003 tsunami generated by the pyroclastic flow descent into the 
water, resulting from the Soufriere volcano eruption on the island of Montserrat in the Caribbean Sea 
(Pelinovsky et al., 2004). In (Pelinovsky et al., 2004) two approaches were used to model it. In the 
first case, a hydrodynamic source in the form of a cone was used as the initial approximation, and the 
propagation was computed by using the shallow water code TUNAMI (Goto et at., 1997), 
recommended by UNESCO for tsunami studies. In the second case, the pyroclastic flow was 
generated using the model described in (Watts and Waythomas, 2003), and the wave propagation was 
computed using the FUNWAVE code (Kirby et al., 1998), based on the nonlinear-dispersion theory. 
Later, after adding a block to calculate various initial disturbances, this code was called GEOWAVE. 
A rather significant difference in the results obtained with the help of these approaches is shown in 
(Pelinovsky et al., 2004). This difference can be observed both in the fundamental wave height 
prediction and in the wave pattern as a whole. It should be noted that the use of the nonlinear-
dispersion theory is the most appropriate. As the hydrodynamic source in the form of a cone (Fig. 3a) 
was used as the initial condition for both calculations in (Pelinovsky et al., 2004), the source 
generated by the model described in (Watts and Waythomas, 2003) is taken for an adequate 
comparison of the tsunami distribution. The source obtained by this model also has the form of a cone 
(Fig. 3b), the geometric parameters of which correspond to the descending pyroclastic flow. The 
initial tsunami wave amplitude in the source is 1.26 meters. The distance between the calculated grid 
nodes is equal to 500 meters. 
 
Figure 4 shows the results of computations the tsunami propagation within the framework of the 
Navier-Stokes equations with the help of the LOGOS code in comparison with the calculation results 
employing the non-linear dispersion theory using the GEOWAVE code. As can be seen, the figures 
are almost identical qualitatively. The quantitative comparison of the tide gauge records presented in 
Fig. 5 can also be considered very satisfactory. The first incoming waves to the north-western part of 
the island of Guadeloupe and to the island of Antigua are almost identical. It can be seen that the first 
three waves are well predicted by both methods, although their heights are somewhat different. 
Subsequent waves are different to a greater extent, and the Navier-Stokes equations lead to a more 
pronounced vibrational character. The waves calculated from the nonlinear-dispersion model,  
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however, are more rapidly damped. These differences can be associated with many factors and require 
additional research. These factors are primarily the models themselves; they are different and are 
solved by using various numerical approaches, namely, finite differences and finite volumes. 
Secondary factors include the grid model resolution and the numerical approximation schemes used 
 
 
 

 

 
 
 
 

Figure 3. Initial tsunami disturbance: a – hydrodynamic source, b – the profile obtained by using the 
GEOWAVE code, c – calculation area, d – tide gauge positioning 
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Figure 4. Tsunami propagation snapshots: GEOWAVE (left) and LOGO (right) 

 
5. CONCLUSION 

 
The given paper is concerned with the problem of constructing a numerical algorithm which ensures 
the correct calculation of the gravitational force and the pressure gradient value. The calculation is 
carried out in the case of medium density discontinuities, which are always present in the problems 
with a free surface. To obtain the correct field of hydrostatic pressure, when compiling the equation 
for pressure and its calculation, it is proposed to use the algorithm to isolate the gravity force 
contribution. In doing so, the solution of the problem of a two-phase medium gravitational 
equilibrium is used. The correct pressure gradient calculation in the event of gravitational force field 
discontinuities is ensured by using an algorithm that allows us to obtain good results on any 
computational grid type. The main idea of the algorithm consists in direct calculating the contribution 
of the pressure gradient and the gravity force to the equation of motion. 
 

 

 
 

Figure 5. Comparison of tide gauge records on the islands of Guadeloupe and Antigua 
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The possibility of the proposed algorithm in tsunami problem use is demonstrated on the example of 
the tsunami simulation that occurred in the pyroclastic flow descent during the volcano eruption on 
the island of Montserrat in the Caribbean in 2003.  
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