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ABSTRACT 
 
The paper presents a unified computing technology for all stages of landslide-type tsunami. The 
computing technology is based on the numerical solution of the Navier – Stokes equations for 
multiphase flows. The method of numerical solution of the Navier – Stokes equations uses a fully 
implicit algorithm. This algorithm removes stiff restrictions on the time steps and allows simulating a 
tsunami propagation in arbitrarily large water basins. The basic sampling equation formulas, 
coefficient types as well as the basic steps of the computational procedure are presented. The landslide 
is modeled by a single phase with its density and viscosity, which is separated by the interface from 
water and air phases. A parallel algorithm of the method implementation based on an algebraic 
multigrid method is proposed for the effective usage of the method to calculate the tsunami in large 
water areas. The multigrid method of implementation is based on algorithms of global level and 
cascading collection. These algorithms do not impose restrictions on the scale parallelization and 
allow the use of the proposed technology in petaflop class systems. It shows the possibility of  
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simulating all the stages of the landslide-type tsunamis: generation, propagation and runup. The 
verification of the method is carried out by using the tests provided by the experimental data. The 
mechanism of bathymetric data accounting and the technology of constructing three-dimensional grid 
models are described. The results of the comparison with the non-linear dispersion theory are 
presented for the historical tsunami that resulted from a volcanic eruption on the island of Montserrat, 
the Caribbean. The results of this comparison are in good agreement. 

 
1. INTRODUCTION 

Tsunami database contains more than 2,200 registered events in the world and more than 9,000 
observations of wave heights on a shore (http://tsun.sscc.ru/hiwg). More than 10% of them are 
tsunamis generated by underwater and aerial landslides, and 5% are generated by volcanic sources, to 
be more precise, by pyroclastic flows formed as a result of a volcanic explosion. According to the 
accumulated data, tsunamis generated by landslides have the highest runup heights, which can reach 
several hundred meters. The most famous landslide-type tsunamis are events in Alaska (Lituya Bay) 
(1853, 1936, 1958), Norway (1936) and Greenland (2000) (Rabinovich et al., 2003; Fine et al., 2005; 
Papadopoulos & Kortekaas, 2005). The greatest tsunami wave height of 60 meters was observed in 
Lituya Bay on 10 July, 1958 with a maximum splash in the bay itself 525 meters. The review of 
historical landslides and tsunamis generated by them can be found in (Langford, 2007; Papadopoulos 
& Kortekaas, 2005). 

Waves excited by underwater and aerial landslides achieve the maximum possible runup directly near 
the source at a distance of 10-15 km along the coastline (Papadopoulos & Kortekaas, 2005). However, 
the tsunami of this kind can propagate significantly further. They can keep their destructive potential 
for hundreds of kilometers. 

Tsunamigenic landslides can be divided into three types: aerial, partially submerged in the water and 
submarine. The initial position of the landslide is the basis for selecting physical and mathematical 
models suitable to describe tsunami generation and propagation. It is advisable to use a three-phase 
system: fluid-air-landslide to describe aerial and partially underwater landslides, whereas for 
underwater landslides it is enough to use a two-phase or a two-layer model with different density 
layers. The landslide itself is modeled by a non-deformable rigid body or a system of such bodies as 
well as by incompressible fluid or a separate layer with its own values of density and viscosity 
coefficients (Fedotova et al, 2004; Watts & Grilli, 2003; Heinrich et al, 1998; Imamura & Imteaz, 
1995; Zahibo et al, 2010; Nikolkina et al, 2010; Didenkulova et al, 2010, 2011). 
Surface waves generated by landslides are specific in their own way. The formation of the wave in the 
coastal zone takes a fairly long period of time comparable to the time of the landslide movement.  The 
characteristic landslide size is often comparable with the depth. Unlike the tsunamis of seismic origin 
the landslide-type tsunamis are shorter (Dutykh & Dias, 2009), which requires considering wave 
dispersion. To simulate these waves nonlinear-dispersive shallow water equations are used which are 
able to reproduce the dispersion. These equations are solved by finite-difference methods built on the 
basis of the second-order accuracy schemes (Watts & Grilli, 2003). However, these systems include 
mixed higher order derivatives. Due to that, building efficient numerical algorithms to solve them it is  
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not a trivial task. The use of nonlinear dispersive equations for simulating landslide tsunamis is 
discussed in (Fedotova et al, 2004; Gusev et al., 2013). 
It is worth noting that the type of landslide tsunami is paid enough attention to. A large series of 
experimental studies (Langford, 2007; Watts &  Grilli, 2003; Sælevik et al., 2009; Fritz et al., 2009; 
Horrillo et al., 2013; Mohammed & Frits 2010; Mohammed, 2010)1, and some theoretical  works 
(Langford, 2007; Papadopoulos& Kortekaas, 2005; Fedotova et al., 2004; Watts &  Grilli, 2003; 
Imamura & Imteaz, 1995; Dutykh & Dias, 2009; Gusev et al., 2013; Beizel et al., 2011; Harbitz et al., 
2006) have allowed substantial progress in the development of numerical methods for tsunami 
calculation.  
Besides experimental data, there are analytical solutions available for calibration and testing the 
developed methods (Pelinovsky, 2003; Okal & Synolakis, 2003; Didenkulova et al., 2010). Numerous 
articles discuss the results of historical landslide type tsunami simulation (Heinrich et al, 1998; 
Rabinovich et al, 2003; Fine et al, 2005; Sælevik et al, 2009; Fritz et al, 2009; Horrillo et al, 2013; 
Macías et al, 2015). The study of the various effects accompanying this phenomenon are described in 
(Pelinovsky, 2003; Watts & Grilli, 2003; Fedotova et al, 2004; Harbitz et al, 2006; Didenkulova et al, 
2010; Beizel et al, 2011).  

According to (Lynett, 2010) two approaches must be used to describe landslide-type tsunami 
formation correctly: the solution of fully 3D hydrodynamics equations or a simplified system based 
on them which is the result of depth integration. Depth integration, in fact, eliminates the vertical 
coordinate and reduces a 3D system to 2D, which serves as the basis for an NLSW (nonlinear 
shallow-water) class models. This class of models is well established in modeling seismic tsunami 
propagation over long distances. The use of NLSW models for landslide-type tsunami leads to the 
incorrect description of wave form and propagation time. It is caused by shorter wave generation in 
comparison with seismic sources (Lynett, 2010). For the majority of landslide-type tsunami it is more 
reasonable to use the Boussinesq equations, although they also have limitations (Watts et al, 2003). 
The use of 3D models to generate a landslide-type tsunami is reduced to the use of special systems on 
the basis of the Laplace equation (Cecioni & Bellotti, 2010 ; Grilli et al, 2002). An attempt to use 
three-dimensional models based on the fully Navier-Stokes equations is represented in a few works 
(Horrillo et al, 2013; Ma et al, 2013; Liu et al., 2005) due to their computational cost. However, in 
recent years there has been a significant increase in computing power and their affordability, so the 
development and application of these models is becoming an urgent task. The use of the Navier-
Stokes equations together with the equation for calculating deformable landslide motion (Ma et al., 
2013). LES (Large Eddy Simulation) approach to this class of problems (Liu et al., 2005) seems 
uncertain due to very strict requirements for the used numerical schemes and the calculation of the 
cascade transfer of turbulent kinetic energy for vortex structures of different scales (Kozelkov et al., 
2016; Kozelkov & Kurulin, 2015). In (Horrillo et al., 2013) a simplified 3D model was used to 
generate the landslide-type tsunami source in the Gulf of Mexico. The use of a complete 3D model to 
calculate all tsunami waves stages including the runup seems promising enough. At present, to 
calculate the propagation (including formation) and runup the multi-layer models are used (Lynett & 
Liu, 2005): one model for propagation, and the other for the runup calculation. The review of physical  
                                                
1Paper [14] gives an extensive bibliography on the experimental and analytical studies of landslide-type tsunami. 
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and mathematical models currently used to simulate the landslide-type tsunami is presented in 
(Mohammed, 2010). 

The main difficulty in using the Navier-Stokes equations in scientific and industrial applications is 
their significant computational cost. The current system study is aimed at developing the methods of 
hydrodynamic calculation acceleration as well as at improving their accuracy (Volkov et al, 2013; 
Kozelkov et al, 2013; Kozelkov et al., 2016). 

This paper presents a computed technique for landslide-type tsunami calculation on the basis of a 
fully implicit method of solution fully 3D Navier-Stokes equations which describe multiphase flows. 
The proposed method significantly weakens the demand for the time steps, which is one of the main 
advantages in the simulation of tsunami propagation over long distances. The fully implicit scheme 
also proves very stable. The algorithm for accelerating the convergence of the proposed method using 
multigrid technologies is presented in the paper. The basic sample formulae, the stages of the 
computational procedure and the algorithm for the bathymetric data accounting are given. The 
efficiency of the technology is tested on the known experimental data. The possibility of using the 
computed technology to calculate all landslide tsunami stages and to simulate tsunami in any part of 
the World Ocean is demonstrated in the paper. Section 2 presents the basic model equations and 
methodology of their numerical solution. The results of the proposed methodology validation in 
problems of tsunami generation which is the result of surface and underwater landslides having 
experimental data are given in Section 3. Section 4 presents the technology of three-dimensional grid 
model construction in the World Ocean with the detailed areas of the slide, runup and tsunami 
propagation. Section 5 describes the technology of calculation acceleration based on the algebraic 
multigrid method. Section 6 presents the landslide tsunami simulation results using different 
approaches from the source and with the simulated pyroclastic flow slide within the Navier - Stokes 
equations. The obtained results are summarized in Section 7. 
 
2. BASIC MODEL EQUATIONS AND NUMERICAL SOLUTION METHOD  
 
Let us consider the “air-water” system as a set of two incompressible media separated by the 
interface. We will use the one-velocity approximation, in which the continuity equation and the 
equation of momentum conservation are the same for both water and air. These equations are solved 
for the resultant medium, the properties of which are linearly dependent on the volume fraction (Hirt 
& Nichols, 1981). This approach is quite widespread and gives good results in solving problems with 
a free surface (Ubbink, 1997) including those for tsunami waves (Horrillo et al, 2013; Kozelkov et al., 
2015; Kozelkov & Pelinovsky, 2016). In the framework of this approximation the motion is described 
by the Navier-Stokes equations, including equations of continuity, momentum conservation, as well 
as the equation for the volume fraction of the phases (Kolev, 2007; Volkov & Emelyanov, 2008): 
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(1) 

here u is a three-dimensional velocity vector ρ(k) is density of k-phase, and α(k) is  its volume fraction (
), p is pressure, µ(k) is molecular viscosity of k-phase, g is gravity acceleration. This system 

is solved directly without the use of Reynolds averaging and the subsequent closure of the turbulence 
model. This allows solving turbulent structures, the minimum scale of which is determined by the grid 
resolution. 
System sampling (1) can be carried out by any known method. The best choice is the finite volume 
method (Ubbink, 1997; Kozelkov & Kurulin, 2015) which possesses good conservative properties and 
enables sampling complex computational areas on arbitrary unstructured grids with cells of arbitrary 
shape. The main difficulty in the numerical solution of the system (1) is to determine the connection 
of the pressure field with the velocity field. The procedure of matching the pressure field with a rate 
field should lead to the simultaneous satisfaction of the continuity and momentum conservation 
equations. The most common methods are SIMPLE type methods based on pressure correction 
procedure, or the principle of splitting the unknown quantities (Ferziger & Peric, 2001; Kozelkov et 
al, 2013). For the SIMPLE-procedure the equation for the volume fraction and the mass forces is 
omitted, a cell P with the faces f = nb(P) is considered, and the system of equations (1) is written in a 
discrete form: 

      (2)

 

where n is time layer, τ is time step, Sf  is the area of the interface f  between the control volumes of 
the computational grid (Fig. 1), uf − is the value of the velocity on the edge (hereinafter, the index f  
means the affiliation of a value to a face), nb(P) − is the number of cell edges (in this case, cell P), see 
Fig. 1. 
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Fig. 1. Adjacent control volumes of the computational grid 

The solution of system (1) by the SIMPLE algorithm assumes that the equation for the transfer of 
volume fractions (n – 1) for the volume fraction  of phases k is solved separately 

from continuity and momentum conservation equations. In the classic formulation of the SIMPLE 
algorithm the connection of velocity and pressure is carried out semi-implicitly. It takes place through 
the use of pressure from the previous iteration step, which often leads to slow the solution 
convergence. To improve the efficiency of work and the SIMPLE algorithm convergence 
modifications that best adapt to the velocity and pressure fields are developed. One such modification 
is a combined algorithm for solving velocity and pressure (Chen & Przekwas, 2010). The combination 
is done by implicit sampling of the pressure gradient and mass flow in the conservation of momentum 
and continuity equations. That helps to avoid the steps of predictor and corrector. Thus obtained 
implicit coefficients are summed into a single diagonally dominant matrix solved by using multigrid 
methods (Volkov et al, 2013; Kozelkov et al, 2013; Kozelkov et al, 2016; Tai & Zhao, 2003). 

For the combined algorithm system solutions (1) the system of equations (2) is rewritten in the form 
of: 

    

(3)

 

here, the “upper line” indicates that the edge value is obtained by interpolation of the adjacent control 
volumes. The continuity equation in the system (3) uses the Rhie-Chow correction (Rhie & Chow, 
1983) which levels the difference of pressure gradient approximation in the continuity and momentum 
conservation equations. The amendment also links the velocity and pressure fields at the simultaneous 
solution of continuity and motion equations. 
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To implement the fully implicit algorithm for the solution of (3) can be rewritten in its algebraic form: 

                              (4) 

The summation over the index «j» for the first equation of the system (4) – continuity equation, gives 
general matrix coefficients to calculate the pressure in the control volume of the discrete model. These 
coefficients are: 

                                  ,   , 

,   ,   ,                                (5) 

                                  , , . 

For these coefficients, a non-orthogonal correction algorithm is used (Jasak, 1996), allowing to 
correct the calculation on arbitrary unstructured grids.  The formula of calculating the edge pressure 
by using linear interpolation from the values in the center cells is also used (Ferziger & Peric, 2001): 

.     (6) 

For the first equation of the system (4) the right side has the form: 

.                           (7) 

The summation over the index «i» for the second equation of the system (4) – for the conservation 
momentum equation - gives the total matrix system coefficients to calculate the velocity component: 

.                            (8) 

The first term of (8) refers to the diffusion term, and the total matrix system coefficients have the 
form: 
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, , , 
(9) 

, , . 

As well as for the coefficients (5), a non-orthogonal correction algorithm for recording is used. 

The second term of the expressions (7) is a convective component, which is approximated by any 
known differential scheme applicable on arbitrary unstructured grids (Volkov et al., 2013; Kozelkov 
et al, 2015, 2016). Commonly used is an upwind difference (UD) or a counter-flow scheme with 
linear interpolation (linear upwind differences, LUD), the QUICK scheme, the central difference 
scheme (CD),  the NVD family schemes (Normalized Variable Diagram), a hybrid scheme in which 
all the above mentioned schemes are mixed with a counter-flow scheme to increase monotony. 

Non-stationary term sampling can be carried out by one of the known implicit schemes (Jasak, 1996; 
Ferziger & Peric, 2001). The contribution of diffusion and convection terms of conservation 
momentum equations applies to diagonal coefficients of the general matrix system, which, 
considering the non-stationary sampled term using the Euler scheme, have the form: 

                            (10) 

For the second equation of (4) the right-hand side has the form: 

           (11) 

Thus, the combined system of linear algebraic equations of the fully implicit algorithm for the 
simulation of a multiphase flow is as follows: 
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.      (12) 

This system is written to calculate the total velocity and pressure of the multiphase flow, but it can be 
generalized in case each phase has its own speed and physical properties such as compressibility and 
turbulence. These generalizations will be held in further. 
To simulate the phase boundaries after solving the system (12), the equation of volume fraction 
transfer is solved (third equation (1)), which can be solved for (n – 1) the volume fractions of phases. 
Its sampling by the finite volume method is carried out according to the scheme completely similar to 
the one used for the conservation momentum equation. To approximate the convective term of 
volume fraction transfer, equation M-CICSAM scheme (Waclawczyk & Koronowicz, 2008) is used. 
It refers to a class of compression schemes of high resolution; it ensures the lowest possible thickness 
of the interface and preserves the volume fraction distribution under parallel transfer and rotation. 

In the algebraic form the given system of equations for the k-phase is as follows: 

.     (13) 

The coefficients of the matrix of the equation implicit solution (13) are of the form: 

                (14) 

where ,  are values of the volume fraction on the edge found by MCICSAM scheme and, the 

counter-flow scheme, respectively,  is the value of the volume fraction on the previous time 
step. These terms are obtained by a non-orthogonal correction along with sampling. 
For the numerical solution the resulting equation system must be supplemented by initial and 
boundary conditions. On solid walls (such as the bottom of the basin), the pressure and the volume 

fraction gradient and the speed is zero: , , u = 0.  

On the «free» borders static pressure is fixed, velocity and volume fraction gradients are equal to zero: 

, , , . In modeling geophysical problems the upper limit should be 

placed high enough to avoid “spilling” water from the computational domain. 
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Initially, water and air are at rest: u0 = v0 = w0 = 0, the pressure distribution is hydrostatic, i.e. satisfies 
the equation: 

      .     (15) 

The volume fraction of phases (e.g. water and air) is determined in accordance with a predetermined 
level of the free surface position. 

The calculation of the landslide movement in this model is carried out by means of a separate phase 
having its own density and viscosity, as well as water and air, i.e. a three-phase hydrodynamic system 
is obtained. Additional boundary conditions for landslide modeling are not required; all interactions 
with the liquid and air are modeled by the corresponding terms of the original system of equations. 
The fully implicit formulation of the numerical scheme relieves severe restrictions on the time step 
and ensures the stability of the iterative process at the maximum possible Courant number. 

The presented method is implemented in the LOGOS software package - a software product designed 
to solve conjugated three-dimensional problems of convective heat transfer, aerodynamics and 
hydrodynamics on parallel computers (Betelin et al, 2014; Kozelkov et al, 2016). The LOGOS 
software package has successfully been verified and shown quite good results in a series of different 
hydrodynamic problems (Volkov et al, 2013; Kozelkov et al, 2013; Betelin et al, 2014) including 
turbulent and unsteady flow calculations (Kozelkov et al, 2015, 2016), as well as tsunami waves of 
cosmogenic origin (Kozelkov & Pelinovsky, 2016; Kozelkov et al., 2015). All the calculations in this 
article are conducted by using the LOGOS software package. 

 

3.  VERIFICATION OF THE NUMERICAL MODEL  

The proposed methodology can be validated by using a number of the available experimental data 
(Langford, 2007; Watts&Grilli, 2003; Sælevik et al, 2009; Fritz et al, 2009; Horrillo et al, 2013; 
Mohammed&Frits, 2010; Mohammed, 2010; Chen & Przekwas, 2010; Grilli et al, 2003; Watts, et al., 
2001). Here we describe some tests for verification of numerical model.  

 
3.1. Aerial  landslide simulation 

Figure 2 shows a schematic configuration of experimental tank with a pneumatic installation to 
generate a tsunami by deformed granular landslides (Fritz et al, 2009; Mohammed & Frits, 2010; 
Mohammed, 2010). 
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Fig. 2. A tank configuration to study a landslide-type tsunami 
(  landslide location,   tide-gauge location) 

The landslide starts its motion along the inclined plane with a predetermined initial velocity of 3.8 
m/s. During the experiment the input landslide speed into the water is measured as well as the water 
displacememnt in some tide-gauge points located in both the “open” water (tide-gauge 1) and in the 
vicinity of artificial barriers to measure the runup (tide-gauges 2, 3). Tide-gauge 1 in “configuration 
1” is located directly in the wave propagation path, and in “configuration 2” it is aimed at measuring 
the envelope of the barrier wave. 
The computational grid consisting of 10 million cells is used for the simulation (Fig. 3). In the area of 
the landslide and wave propagation the grid has a concentration to describe the motion of the 
landslide and flow characteristics more accurately. 

 

 

Fig. 3. Grid area (left - a general view, right – the cross section) 
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The parameters of all three phases: water, air and landslide - are chosen in accordance with the 
experiment (Table 1). The water depth is 0.6 m. The landslide dimensions constitute 2.1 m × 1.2 m × 
0.3 m with its rear edge at a distance of 2.8 m from the top of the inclined plane. 

Table 1  
Phase characteristics 

Phase      Molecular viscosity (kg/m/s)) 
 

Density (kg/m3) 

Water 0,001 1000 
Air 1,85е-05 1,205 

Landslide 26 2600 
  

 

Fig. 4. The fluid velocity field at different times 

The simulation is carried out with automatic selection of the time step in accordance with the given 
Courant number equal to unity. The pattern of the landslide entry into the water and its spread to the 
barriers is the same for both configurations. So, the following result presentation refers to 
configuration 1. Fig. 4 shows the velocity field at different points in time of the landslide entering the 
water. The figure shows that at the time of entry into the water (t = 0.6 s), the landslide has a speed of 
about 5.5 m/s, which is in good agreement with the experiment. The maximum medium speed is 
observed for the water phase at the wave breaking point (t = 1.2 s) and is greater than 6 m/s. 
The velocity distribution pattern also allows us to see air disturbances which are very low (about 1 
m/s) as compared with the other phases, which legalizes that air compressibility ca be neglected. At 
the overturn moment the wave has the amplitude of about 50 cm that corresponds to the water 
displacement in the basin (Fig. 5). 
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After the first wave overturn, the landslide still continues moving along the bottom. After the main 
mass sliding at the time of 2 sec the second wave with the amplitude 2 times smaller than the first is 
formed. At the time of 4 sec the landslide is completely in the water, and two waves move on its 
surface one after the other. At time point of 6 sec a wave runup on the artificial “fiords” is observed. 
Their amplitude is about the same and is about 10 cm (Fig. 6). The wave runup is also observed on the 
“fiords” from which the landslide occurred, and its magnitude is about the same. 
 

 

Fig. 5. Snapshots of water displacement in the basin at different times 

 

Fig. 6. Wave pattern (left – configuration 1, right – configuration 2) 
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The computed quantitative characteristics of a wave pattern in the tank can be estimated by tide-gauge 
data (Figs 7 and 8). As can be seen from the figures, numerical calculation reproduces the tide-gauge 
records of all the incoming waves, and their amplitude is almost identical with that obtained in the 
experiment. This applies to both the first wave and the last waves. The only significant difference in 
the numerical experiment is obtained for tide-gauge 1 in configuration 1 for the “averaged” incoming 
waves. In the numerical calculation, the re-reflection wave processes strengthened its amplitude even 
more than it was observed in the experiment. In the experiment there is also a certain gain, although 
much weaker. For fiord 2 all tide-gauges also gave a good agreement on the wave pattern. The slight 
difference in wave heights is observed for the third tide gauge. 
 

 

Fig. 7. Tide-gauge records for configuration 1 

 

Fig. 8. Tide-gauge records for configuration 2   

3.2. Underwater landslide simulation 

Here we use the results of (Langford, 2007; Grilli et al, 2003; Watts, et al., 2001) which describe a 
series of experiments on partially submerged landslides. Schematically, the tank configuration is 
shown in Fig. 9. 
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The landslide starts free sliding down on an inclined plane at an angle of 150. During the experiment 
the surface displacement is measured at several tide-gauge points located on a water surface at a 
certain distance from the shore. 

 
Fig. 9. Tank configuration to study underwater landslide 

The experimental configuration SG3_IS5 is chosen for the study, according to which the landslide 
density is 2830 kg/m3, the water and air parameters are set in accordance with the values of Table 1. 
For the modeling the same type computational grid is used as for the surface landslide (Fig. 3), 
consisting of ~ 100,000 cells. In the area of the landslide movement and wave propagation the grid 
has a thickening to describe the landslide motion and flow characteristics more accurately. The water 
depth is 0.435 m, the tank length is 14.66 m. The inclined plane along which the landslide moves is 
set by the equation 

 

In this case the landslide dimensions are 0.5 m × 0.026 m × 0.25 m. The initial landslide position is 
also set according to the selected configuration (half-emerged state), with its mass located at a 
distance of 0.19 m from the coast and at a depth of 0.1 m below the water level (Fig. 10). 
 

 

Fig. 10. Landslide location at the initial time 
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The simulation is carried out with time step automatic selection with the given Courant number equal 
to 0.5. The pattern of the landslide into the water, its moving along the inclined plane and wave 
propagation is observed in the time interval of 7 sec. After the first wave overturn the landslide 
continues moving along the inclined bottom (Fig. 11). 
After the main mass sliding at one time moment of 1.6 sec the second wave is formed with the 
amplitude smaller than the first. At the point of time of 2.6 sec the landslide is completely in the water 
and successive waves move on its surface. 

The quantitative characteristics of the waves can be found from the tide-gauge data (Fig. 12). Here 
tide gauge 1 is located at a distance of 1.5 m, tide gauge 2 - at a distance of 2.5 m, tide gauge 3 - at a 
distance of 3.5 m, and tide gauge 4 - at a distance of 4.5 m (all distances from the left boundary). 
Computed and observed wave amplitudes are almost the same. This applies to both the first and the 
last waves. Only strengthening (weakening) of the second wave is observed. The most significant 
difference in the numerical experiment is obtained for tide-gauge 1 for the “first” negative and the 
“second” positive incoming waves. In the numerical calculation re-reflection processes more 
strengthened/weakened the wave than is observed in the experiment. The experiment also has a 
certain gain, although much weaker. On the whole, the simulation results well correlate with the 
experimental data. 
 

  

  

  

Fig. 11. Snapshots of landslide motion and wave propagation 
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Fig. 12. Tide-gauge records 

4. GRID PATTERN CONSTRUCTION TECHNOLOGY  

Building a grid model for the numerical solution of the Navier-Stokes equations is one of the key and 
most difficult stages of the entire modeling process. The experience of solving various classes of 
problems shows (Kozelkov et al, 2016; Betelin et al., 2014) that the grid model construction can take 
more than 70% of the time beginning with the task up to obtaining the final result. The quality of the 
constructed grid directly depends on the accuracy of the solution. The most universal type of grid 
models are unstructured grids consisting of arbitrary shape polyhedra. The level of development of 
unstructured grid automatic generators allows building a grid model of the required quality in the field 
of arbitrarily complex geometric configuration in a relatively short time. Automatic generation means 
choosing the average grid cell size for the entire computational domain, which ultimately results in a 
major drawback of this method – the size of the final grid model can reach enormous sizes (hundreds 
of millions and even billions of counting cells). Therefore, the use of this generator type involves the 
introduction of sub-areas of the grid model with its own size and then their aggregation. In addition, 
this grid type imposes restrictions on the used numerical schemes. Then the order of approximation 
schemes, as a rule, does not exceed the second order unless special methods to increase accuracy are 
used (Volkov et al., 2014). In addition, the classical scheme of the second order of the central-
difference type on such grids are completely unstable, and to make calculations on their basis it is 
necessary to build a hybrid scheme adding a share of counter-flow (Jasak, 1996; Ferziger & Peric, 
2001; Kozelkov et al, 2016; Kozelkov & Kurulin, 2015). Despite all the difficulties, these grids are 
essential for most industrial-oriented tasks, and at present they are an integral part of the technological 
chain of the process of mathematical modeling. 
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Another way to build a grid model is the use of block-structured grids. When constructing them, it is 
possible to control the size of the cells and their growth rate in a given direction, and, therefore, to 
control their quantity. The advantage of this method is the ability to use high-order accuracy schemes 
due to pre-known grid model structure. A significant disadvantage of this method is that the 
construction of acceptable quality grid patterns in the areas of complex geometric configuration may 
require the introduction of a substantial number of units and their further conjugation. It results in 
back-breaking manual labor that can last for months. If a total pattern can allocate large blocks which 
enable building a block- structured grid, it is advantageous to do so. The current practice of 
hydrodynamic calculations often uses a combination of block- structured and automated approaches. 
When the Navier- Stokes equations are used in tsunami problems, it is expedient to resort to the 
combination of the two presented approaches. This is primarily due to the different scales of the 
considered tsunami stages as well as wave characteristics. It should be stressed that this applies to all 
types of tsunamis, modeled by using the Navier-Stokes equations: seismic, cosmogenic and landslide 
origin. For the seismic-origin tsunami the different scales of the source and propagation area are not 
as critical as, for example, for cosmogenic and landslide origin, as the size of the seismic source can 
amount to tens of kilometers. In this case, the cell size in the area of the tsunami generation and 
propagation is comparable. For cosmogenic and landslide tsunamis the situation is different. 
Cosmogenic tsunami generation can be caused by a meteorite of only a few meters large (Kozelkov & 
Pelinovsky, 2016; Kozelkov et al., 2015), whereas wave propagation is thousands of kilometers. Grid 
pattern sell dimensions in the area of meteorite movement is times (and, perhaps, dozens of times) 
different from the cell size in the tsunami propagation area. 
This is also characteristic of landslide-origin tsunami, though, perhaps, with less stringent 
requirements, since the landslide size however large, is unlikely to amount to tens of kilometers. Also, 
when modeling the landslide motion it is necessary to take into account the force of friction on the 
“underlying” surface. It involves the selection of the boundary layer for calculating it accurately by 
analogy with the turbulent boundary layer (Kozelkov et al, 2015, 2016; Kozelkov & Kurulin, 2015). 

In addition, to describe tsunami wave propagation in the ocean where the wave amplitude amounts to 
tens of centimeters, it is necessary to use a grid with about the same cell size. Given, that the ocean 
depth can be hundreds of meters and grid generation with cell size of tens of centimeters will lead to a 
grid model of enormous size, it is advisable to apply the mechanism of cell size thickening of the grid 
model to the interface “air water”. All these considerations are the basis of unstructured grid model 
construction technology for tsunami wave simulation on the basis of the Navier-Stokes equations 
presented below. 
Let us consider landslide-origin tsunami near the island of Montserrat in the Caribbean based on the 
works of (Pelinovsky et al, 2004; Heinrich et al., 2001). The calculation area highlighting landslide 
(area 1) and tsunami propagation sub-domains (area 2) is shown in Fig. 13. 

The bathymetric map of the area of the Lesser Antilles, Caribbean is downloaded from the website of 
the International Data Centre for Digital Bathymetry [https://www.ngdc.noaa.gov]. When building a 
grid model, accounting bathymetric data is carried out by excluding from calculation the cells located 
below the earth’s surface bathymetric line and the ocean floor. To do this, the whole bathymetric 
model is immersed in a box with the correct dimensions exceeding the size of the model. Then the  
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extra cells are simply removed. This method of constructing the computational model includes 3 
stages: 
• the construction of a computational grid with a flat bottom, the depth of which is determined by 

the maximum depth of the considered water area section according to bathymetric data; 
• the calculation of the local water depth for the coordinates of the each calculated cell center by 

interpolating the data from the next bathymetric points; 
• the exclusion from the calculation model the cells, the vertical coordinate of which lies below 

the bottom. 

 

 

Fig. 13. Calculation domain of highlighting landslide (area 1) and tsunami propagation (area 2) 

This technology is simple to implement, but it leads to a step change in the level of the water area 
bottom (Fig. 14) which is determined by the characteristic cell dimension near the bottom, and can be 
reduced by local refinement of the computational grid. Obviously, the smaller the grid near the bottom 
is, the more accurately it describes the bathymetric line. After the procedure provided, a surface grid 
describing the bathymetric relief of the earth’s surface and the ocean floor is formed on the basis of a 
set of bathymetric points. 
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Fig. 14. Computational grid near the bottom, the line is bathymetric line built on the basis of map 
points ( ) 

To construct a grid in the landslide area (area 1 in Fig. 13) is used an automatic unstructured grid 
generator with highlighting the prismatic boundary layer. Using the boundary layer allows to describe 
the landslide rheology and the frictional force between the landslide and the underlying surface more 
accurately. It is assumed that at the initial time the landslide has a parallelepiped shape with 
dimensions 800×2000×25 m in width, length and height, respectively (Fig. 15). This corresponds to 
the parameters set out in [52, 57] and the volume of pyroclastic flow descended into the sea is 40×10PP

6
PP	

мPP

3 

 

Fig. 15. Landslide motion 

 

Fig. 16. Grid model for the pyroclastic flow gathering field 
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In this case, the input data for the grid generator is a surface grid area 1 (Fig.13). The specification of 
a slope surface in the pyroclastic formation area is achieved by using a refinement unit for the 
boundary layer. The width of the boundary layer is about 30 meters (dimension “a” in Fig.15). This 
value is slightly higher than the maximum height of the pyroclastic flow at the initial time and allows 
simulating it the necessary detailing. When needed, this value can be increased or decreased in 
accordance with the required dimensions of the modeled landslide, i.e. the size of the refinement unit 
is set out considering the pyroclastic flow initial position and its motion size range. With these 
parameters, the base cell size is 75 m (Fig. 16, area 1). In the zone of the boundary layer considering 
the first refinement, the near-wall cell height is 1 m (Fig.16, area 2) with 1.15 growth factor. Fig. 16 
(right) shows an enlarged fragment of the section in the zone of the refinement unit. These grid 
resolution parameters are optimized for the geometry of the problem and can adequately simulate all 
the features of the pyroclastic flow movement and its entry into the water, thus creating a pulse 
provoking a tsunami wave. The size of the grid model of the pyroclastic flow gathering (area 1 in 
Fig.13) contains about 7 million cells. 
In the open ocean, where it is necessary to simulate tsunami propagation, it is advisable to build a 
block-structured grid specifying the interface of “water-air” section. The main purpose of constructing 
the grid in such a way is thus providing a sufficient size cells near the interface of the “water-air” 
section in the entire area for simulating both energy-bearing and fading tsunami waves of small 
amplitude. With the help of the block-structured grid generator is built a regular parallelepiped with 
dimensions 230 km × 230 km, the depth of 5200 m and 1100 m height (it is determined by the 
maximum depth and the height of the area under consideration according to the bathymetric data) 
(Fig.13, area 2). Since the pyroclastic gathering detailing area is not taken into account, from the main 
block a parallelepiped is cut whose coordinates coincide with the coordinates of the block for area 1 
(Fig.13). The methodology of interface separation is as follows. After building the model geometry, a 
three-dimensional block is divided on its edge into 2 parts. The main coordinate of the rib is aligned 
with the surface of the “water-air” section (z = 0). The linear dimension of the cells adjacent to the top 
and bottom of “water-air” interface is 0.1 m. This size is specified increasing by the law of 
geometrical progression with the growth rate from the surface to the bottom and to the top interface of 
the air by a factor of 1.15. This allows to get rid of too “small” cells in the areas that do not require 
simulation. The thickening of the “water-air” section interface is shown in Fig. 17 left. In addition, the 
area is divided into blocks of additional cell refinement near the dock to provide a smooth transition 
from the small cell size in the detailing area to a bigger size in the area of the free wave propagation 
(Fig.17, right). 
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Fig. 17. Computational grid block with interface “water – air” condensation (left) and a transition area 
between the grid blocks (right) 

Next, according to the algorithm described above, the accounting of bathymetric data is carried out by 
excluding the cells, located below the earth’s surface bathymetric line and the ocean floor, from the 
computational domain. Thus constructed the grid model for area 2 contains approximately 13 million 
cells, i.e., the general model consisting of these two areas will contain about 20 million cells. To 
construct the final grid model the grids, obtained in the previous two stages, are to be linked. To do 
this, both grid models are loaded in the LOGOS pre-post-processor package. Further, both grids are 
united into one using the node connection procedure (Fig. 18). Figure 18 below shows an enlarged 
fragment of the section in the joining zone of the two grid models. 

 

Fig. 18.The final grid model for the computational domain 

Thus, the presented technology of this class grid building provides an adequate quality grid model, 
which consists mostly of regular hexahedral cells with adequate resolution for numerical simulation of 
both the pyroclastic flow gathering area and the propagation of waves of varying amplitude. It should 
be noted here that this technology allows constructing grid models for a more accurate calculation of 
tsunami runup. To do this a coast zone must be selected and a grid constructed by an automatic  
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generator in the same way as for area 1 in Fig. 13. The selection of the boundary layer in the runup 
area allows not only setting the desired properties of the underlying surface (roughness accounting 
with special boundary conditions), but also simulating the turbulent wave transformation in the 
collapse by the method of wall functions. 

5. TECHNOLOGY TO ACCELERATE THE COMPUTATIONS  

In many practical problems the discretization of the Navier-Stokes equations yields a system of 
difference equations with ill-conditioned matrix, the condition number of which is often 107-108, but 
for some cases it may be close to 1010 (Kozelkov et al., 2013, 2016 ). As a result, that the matrix 
SLAE decision is the most costly step. When using classical iterative methods it takes about 90% of 
the calculated step computing time. These classical iterative methods either do not work or give a very 
slow rate of convergence. One way to accelerate convergence and improve the stability of the iterative 
process is a multigrid method (Tai & Zhao, 2003; Volkov et al, 2013; Kozelkov et al., 2013, 2016), 
based on the use of a sequence of nested grids and transition operators from one grid to another. Here 
the algebraic and geometric approaches are distinguished. In the algebraic approach the discrete 
equation of the sequence of nested grids are formed without constructing nested grids on the matrix 
level, whereas in the geometric approach – the hierarchy of networks created by merging the control 
volumes of the upper level of the grid (the detailed one). It is easy to build grid levels using original 
matrices generated by implicit discretization of the Navier-Stokes equations. It leads to the simplicity 
of building operators of restriction and continuation thus making the algebraic approach very 
attractive from a computational point of view. The geometric method requires additional algorithms 
of rebuilding the computational grid which can be justified for certain classes of problems. 
Advantages and disadvantages of both approaches are discussed in (Volkov et al., 2013). 

 

Fig. 19. The sequence of nested grids in the matrix (below) and grid levels (top)                                    
(the top of the figure shows Guadeloupe, Lesser Antilles, Caribbean) 
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The construction of an algebraic multigrid method for geophysical problems involves automatic 
coarsening of the original grid on the matrix level (Fig. 19). The calculation of the equation (12) using 
a multigrid method is as follows. Equation (12) can be represented in the general form: 

Ah xh = bh,                                    (16) 

where h is the index of discrete equation belonging to h grid. The interpolation operator P from a 
coarse grid H on a detailed grid h allows you to represent the operator AH on the coarse grid in the 
form of 

AH = R Ah P,                                                                  (17) 

where R = PT. The solution correction step is as follows: 

.                                                        (18) 

The solution correction eH is an exact solution of the equation 

AH eH = rH,                                                                        (19) 

where rH = R rh, . 

Thus, the multigrid method using solution correction scheme represents the following sequence of 
steps (Fig. 20, left): 

1. µ1 solution approximations on the grid h by using the Zeidel method (pre-smoothing) are done. 

2. The residual  is projected onto the space VH, т.е. rH = Rrh. 

3. The approximate solution AH eH= rH on the coarse grid is found. γ multigrid cycles are done 
recursively for this. 

4. The correction eH is interpolated on a detailed grid and decision correction is made on the detailed 

grid . 

5. µ2 decision approximations are done on the detailed grid to suppress interpolation errors (final 
smoothing)  

Depending on the number of recursive method calls γ on each grid level emit different types of cycles 
are singled out. When γ = 1 there is a V-cycle, if γ = 2 – there is a W-cycle (Fig. 20, right). If at each 
level is recursively called one a W-cycle, and then the a V-cycle , we obtain an F- cycle (Kozelkov et 
al., 2015). 
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Fig. 20. Matrix sequence (left) and the V- and W- cycles (right) 

In the aggregation method of coarsening with constant interpolation all variables divided into Ik  units 
containing all the indices i, which correspond to the cells included in the unit k. The operator 
construction on the coarse grid is produced by the relation: 

,   , (k, l ∈ C).                                  (20) 

The multigrid method parallelization implies that the matrix coarsening during the transition from one 
level to another occurs independently on each MPI-process (Kozelkov et al., 2016a,b). The coarsening 
process in parallel mode creates two problems. Firstly, the coarsening is stopped if in each the process 
there is one left. Secondly, on a gross level where the matrix dimension is small the time spent on the 
inter-processor communication, due to communication environment latency, begins to repeatedly 
exceed computed time. To solve these problems (Kozelkov et al., 2016) suggests performing the 
collection of small matrices in one process, forming one global level and continuing coarsening and 
solution in sequential mode (Fig. 21, left). 

          

Fig. 21. Global level formation (left) and its cascading collection (right) 
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Using a global level can complete the coarsening process in a parallel case, and also, can avoid the 
overhead expenses resulting from inter-processor communication in the coarse grid level processing 
because of the global level storage on one process. The analysis of the proposed algorithm 
effectiveness, held in (Kozelkov et al., 2016), showed that the average time of computations 
increasing as compared with the classical iterative methods is 4-6 times. A major shortcoming of the 
global level is that it is performed in a sequential mode. When determining the amount of the 
problem, the memory of the unit on which the main processor is located may not be enough to build a 
global level. This aspect will also affect the limitation of the algorithm when using large-scale grids of 
hundreds of millions of cells (such grids are typical of geophysical problems). The way out here is the 
use of cascading level algorithm to gradually reduce the number of processes involved in the analysis 
while maintaining the advantages of the global level. The cascading level algorithm is also presented 
in (Kozelkov et al., 2016). It includes the stage of breaking the whole initial set of residual matrix 
after coarsening in pairs and performing their twinning. In the second stage the operation is repeated 
until the total coarse level matrix is obtained (Fig. 21, right). The level consolidation level in itself, in 
addition to generating information on a new level, contains a procedure of re-definition information 
about inter-processor exchanges, which also requires spending some of the CPU time. In addition, the 
parallel procedure of cascade level coarsening requires the introduction of additional inter-processor 
communication, which are absent in the case of scalar implementation at the global level collection. 
The main advantage of the cascade summation scheme is the algorithm scalability. It actually removes 
restriction on the maximum size of the problem to be solved because of the possible lack of memory 
unit on which the global level is developed. Furthermore, the global level speed increases since its 
component parts are formed and coarsened independently. 

 

6. TSUNAMI SIMULATION  

6.1. Tsunami from the “model” source 

To verify the performance of the presented methodology was simulate the tsunami propagation in the 
one part of the World Ocean. It is based on the tsunami generated by the slide of the pyroclastic flow 
into the water resulting from the eruption of the Soufriere Hills Volcano on Montserrat, Caribbean 
(Pelinovsky et al., 2004). In (Pelinovsky et al., 2004) this tsunami modeled by using two approaches. 
In the first case the model cone-shaped source was used as initial approximation, and the wave 
propagation was computed using the code TUNAMI (Goto et al., 1997) (recommended by UNESCO 
for tsunami research), which is based on shallow-water theory. In the second case the pyroclastic flow 
was generated by the model described in (Watts & Waythomas, 2003) and the propagation was 
computed by the code FUNWAVE (Kirby et al., 1998) based on the nonlinear-dispersive theory. 
Later, after adding the block to calculate different initial perturbations this code got the name  
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GEOWAVE. In (Pelinovsky et al., 2004) is shown quite a significant difference in the results obtained 
using these approaches both in predicting wave heights and wave pattern as a whole. It is also noted 
there that non-linear dispersion theory is more preferable to use. Taking into account that 
hydrodynamic cone-shaped source (Fig. 22,a) was used in (Pelinovsky et al., 2004) for both 
calculations as an initial tsunami approach, here, to compare  tsunami propagation adequately, was 
taken a source generated by the model described in (Watts & Waythomas, 2003). The source 
produced by this model is also cone-shaped (Fig. 22,b). Its geometric parameters correspond to the 
descended pyroclastic flow. The amplitude of the initial wave in the tsunami source is 1.26 m. The 
distance between the nodes of the computational grid has a resolution of 500 m. Fig. 23 shows the 
comparison of wave patterns produced by different approaches (here is the comparison only with the 
GEOWAWE code (the wave pattern with use the TUNAMI program is similar). As you can see, 
qualitatively, the pictures are practically identical. 

 

 

 

Fig. 22. Tsunami source: a – hydrodynamic source; b – source gained by code GEOWAVE;                         
c – computation domain; d – the location of gauges 
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Fig. 23. Snapshots of tsunami propagation: GEOWAVE (left) and LOGOS (right) 

Quantitative comparison of tide-gauge records shown in Fig. 24 can also be considered very 
satisfactory. The leading waves that came in the north-western part of the island of Guadeloupe and  
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the island of Antigua are almost identical. The first three waves are predicted by both calculations, 
though they have slightly different heights. Subsequent waves are described differently, and the 
Navier-Stokes equations give a more pronounced oscillatory character, while the waves calculated by 
nonlinear-dispersive shallow-water theory fade quicker. These differences may be related to many 
factors and require further study. These factors include primarily the models themselves - they are 
different and are solved by various numerical approaches - finite differences and finite volumes. The 
secondary factors include grid model resolution and numeric approximation schemes. 

 
Here should be noted the temporal characteristics of the calculations. The grid model for programs 
based on the shallow water and nonlinear dispersive equations are always two-dimensional with a 
fixed height above sea level at each computational point. The total number of points is only about 200 
million (the grid is 430×430). With the help of these models on the grid only tsunami propagation is 
calculated which requires about 3 hours of computer time opposed to 40 minutes of physical time on a 
single processor. The LOGOS software package carries out the numerical solution of the Navier-
Stokes equations exclusively in three-dimensions. In the three-dimensional grid, taking into account 
topographic features, tsunami propagation requires within 40 minutes of physical time about 15 hours 
on 96 processors. So, the computation is 5 times longer than two-dimensional and occupies 100 times 
greater volume of CPU field. The difference can be explained by the models used. The above-
mentioned two-dimensional models only describe the wave propagation and do not allow 
supplementing by source and runup calculation. In this regard, the three-dimensional model based on 
the Navier-Stokes equations is more versatile - it includes the presence of these stages, and does not 
limit the physical properties of propagation such as viscosity, dispersion and nonlinearity. Expectedly, 
in any in any case, the Navier-Stokes equations reproduce the process more accurately, but they 
require more resources than such simplified models as the shallow water equations. 
 

       

Fig. 24. Comparison of tide-gauge records on Guadeloupe and Antigua 

Vol. 35, No. 3, Page 134, (2016) 
 



6.2. Tsunami with the simulated slide of the pyroclastic flow 

To generate a tsunami directly by pyroclastic flow slide a multi-phase system of the Navier-Stokes 
equations and the method described in Section 2 will be used. In this problem setting the landslide is 
modeled as a Newtonian fluid with its physical characteristics. The properties of all system phases 
correspond to Table 1 (Section 3). The grid model, the technology of its construction and the 
geometric parameters of the computational area the landslide are described in Section 4. The 
movement of the pyroclastic stratum is due to gravity, the initial velocity is absent. The input speed of 
a landslide in the water as well as sea-level in the same gauges is recorded. The simulation is carried 
out with the automatic selection of the time step in accordance with the given Courant number equal 
to 1. Figure 25 presents the velocity field at different moments of the landslide entering the water. The 
figure shows that at the time of entering the water (t = 10 c) the landslide has a speed of about 25-30 
m/s. The landslide maximum speed is observed at the moment of it entering the water (t = 30 c) and 
exceeds 35 m/s. The velocity pattern also allows seeing the disturbance of the air, which are 
negligible in comparison with the other phases. This fact proves air compressibility neglect justified. 

 

 

Fig. 25. Snapshots of velocity of the multiphase system at the landslide entering the water                    
(on the axes are marked meters) 

Figure 26 demonstrates 3D view of wave pattern in the entrance area of the landslide. As you can see, 
the model based on the Navier-Stokes equations gives a more detailed picture of the landslide motion 
than the previously discussed models (Fig. 22,a and 22,b), and can essentially give a comprehensive  
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picture of the landslide tsunami source. Moving along the side of the mountain, the landslide takes the 
form of its topography precisely fitting all its features. About a minute later the landslide completely 
enters the water, at the same time a tsunami wave is generated. The wave height at the source is high 
enough and reaches 20 meters, which is equal to the data (Heinrich et al., 2001). 

 

Fig. 26. 3D view of the entrance area 

Figure 27 shows a further development of 3D wave perturbations. Here secondary waves departing 
from major wave at the source can be observed. These are edge waves propagating along the 
shoreline, and their amplitude is small as compared with the main source of the disturbance. All this 
points to the capabilities of the model used to describe complex fluid physics. Wave propagation in 
the Caribbean is shown in Fig. 28. It is next to impossible to define the difference in the wave pattern 
between the three models used. 

It should be recalled that the grid model used in these calculations is built with a detailed landslide 
area and consists of about twenty million three-dimensional cells. On this grid tsunami propagation 
for 40 minutes of physical is calculated for about 72 hours on 320 processors when using the implicit 
integration method of the Navier-Stokes equations. It is 5 times longer than a similar 3D calculation 
with a model source and 12 times longer than the 2D calculation. It takes 320 times bigger processor  
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field as compared with the 2D calculation and more than 3 times bigger as compared with the 3D 
calculation, but with the model source. This increase in the time of the calculation can be accounted 
for by the detailed entrance area of the landslide. However, the latter made it possible not only to track 
the movement of the landslide on the slope, but also to identify additional physical aspects of a 
tsunami generation formed by a pyroclastic flow slide. 

 

Fig. 27. Snapshots of 3Dl wave pattern with detailed wave disturbances 

 

Fig. 28. Snapshots of tsunami propagation 

Figure 29 demonstrates the comparison of tide-gauge records in the framework of the Navier-Stokes 
equations with a pyroclastic flow slide (LOGOS), shallow-water equations (TUNAMI) and nonlinear-
dispersive equations (GEOWAVE). The first waves that came on the north-western part of the island 
Guadeloupe differ greatly. The wave height computed by the LOGOS is twice higher, which better 
agrees with observations. The gauges «OldRoad» located on the island of Antigua shows a higher  
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result, which better agrees with reality as the island is in close proximity to Montserrat, and there has 
to be one of the peaks. The gauges on Nevis Island, located on the opposite side from the eruption 
site, shows at once a fading wave. The result obtained by LOGOS is closer to the result obtained by 
the shallow-water equations. Nonlinear-dispersive equations give much greater attenuation (fading). 
Subsequent waves are described in different ways, and the Navier-Stokes equations give a more 
pronounced oscillatory character, while the waves, calculated by the nonlinear-dispersion model, also 
fade faster. 

 

Fig. 29. Comparison of tide-gauge records according to three models 

As a result, all the models show that in the north-western part of the island of Guadeloupe a tsunami 
wave is generated, although the shallow-water and nonlinear-dispersive theories show a more modest 
result in amplitude. The model based on the Navier-Stokes equations is much closer to the 
observations (Pelinovsky et al, 2004). It is not difficult to guess and, it really is obvious, that it all 
depends on the description of the tsunami source. The Navier-Stokes equations reproduce the 
landslide tsunami source more accurately. 

 

7. CONCLUSION 

The paper describes the technology for computations the landslide-origin tsunami based on the 
Navier-Stokes equations. The landslide source is modeled by a separate phase representing a 
Newtonian fluid with its own density and viscosity. The methodology of numerical solution of 
multiphase system is based on a fully implicit method, which removes strict restrictions on the time 
step, and allows simulating tsunami propagation at arbitrarily large distances. The formulas for  
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discretization of equation sampling and coefficient types are given. To effectively calculate tsunami 
propagation in large water areas is presented an algorithm based on an algebraic multigrid method. 
The results of a full-scale experiment calculation are given. They demonstrate the possibility of using 
computed technology provided all stages of the landslide-origin tsunami - generation, propagation and 
runup. The algorithm to account bathymetric data for tsunami simulation in real waters of the World 
Ocean is described. The technology of building 3D grid models with the detailed area of generation 
and runup is demonstrated. The results of the comparison with the nonlinear- dispersive theory on the 
example of the historical tsunami of volcanic origin are presented, which showed a fairly good 
agreement for identical sources but different results for the parametric source and the actual slide. 
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