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ABSTRACT 
 
This is a study of tsunami wave propagation along the waveguide on a bottom ridge with flat 
sloping sides, using the wave rays method. During propagation along such waveguide the single 
tsunami wave transforms into a wave train. The expression for the guiding velocities of the fastest 
and slowest signals is defined. The tsunami wave behavior above the ocean bottom ridges, which 
have various model profiles, is investigated numerically with the help of finite difference method. 
Results of numerical experiments show that the highest waves are detected above a ridge with flat 
sloping sides. Examples of tsunami propagation along bottom ridges of the Pacific Ocean are 
presented. 
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INTRODUCTION 
 
 The qualitative theory of waveguides in a media with varying optical density (velocity of 
signals or waves in it) as well as the concept of waveguides with total reflecting boundaries have 
been discussed in the literature (Brekhovskikh [1]). Based on such previous work, the present study 
introduces the concept of waveguides in an application related to the tsunami problem. In a two-
dimensional space the velocity of wave disturbance propagation caused by a sudden disturbance is 
constant and represented by 

0
v . In a linear regime it decreases monotonically and reaches a 

minimum value along the axis. This linear axis where wave propagation velocity is less than 
0
v  is 

named “waveguide”.  If a wave origin source is initially located on such waveguide, a portion of 
the energy will be captured and the waves will propagate along its length for a long time - more 
than likely to the very end of it.  The present study examines the linearly varying but increasing 
wave propagation velocity along the axis of the waveguide. The postulated waveguides look like 
bottom ridges with flat sloping sides. A plane wave on the mean water surface is assumed to be the 
origin source and the initial propagation direction of the wave's front is along the waveguide’s axis. 
The present study develops the quantitative theory of the wave propagating process for waveguides 
of this type. 
 
Determination of wave rays above the sloping bottom. 
 
 Wave rays, widely used in wave kinematic investigations, can be determined as curves, 
orthogonally directing the propagating wave front at every moment of time. In other words they are 
the trajectories of wave front-line points during wave propagation. In an area of constant depth all 
such rays have the form of straight lines.  Based on long-wave theory the propagation velocity for 
tsunami waves depends only on  water depth and is defined by Lagrange's formula 

gHc = .      (1) 

Wave-rays can be defined as the quickest routes of a perturbation's propagation. Wave rays 
are the orthogonal lines of energy directivity along a tsunami's wave front. In ocean areas of 
variable depths, the wave rays do not usually follow straight line paths. Thus, in general, the 
problem of tsunami travel-time determination from one point to another, cannot be easily and 
accurately determined. The integral which describes the time required for a perturbation (tsunami 
wave) to move between points A and C, in the XOY plane is given by: 

  dS
T

c( x , y )
!

= " ,     (2) 

where dS is an element of the γ curve, connecting the points A and C (Fig. 1). 

 
Fig. 1. Diagram of problem of determining the tsunami travel-time from the source to the point on 

the shore line (the wave-ray definition problem) 
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We must now determine the curve γ which minimizes the integral (2). After the trace 
determination it is easy to calculate the required tsunami travel-time from point A to point C.  One 
of the possible ways in determining a wave front's ray trace is by numerical solution of the Cauchy 
problem and the use of governing differential equations. In the case of simple distribution of water 
depth H(x, y) one can find analytically the y(x) curve of interest, and obtain the explicit formula for 
the time required for tsunami wave propagation. We can also proceed with this procedure for a 
sloping ocean floor. The derived solution can explain some of the effects which take place during 
the tsunami wave propagation in the near shore zone. 

Let us now consider the following problem:  we have a rectangular section ABCD of the 
ocean, near the shore (Fig. 1). The sides are a  and b long. The point A, which is on the shore-line, 
we shall assume to be the zero point of the Descartes coordinate system XOY. Let us also assume 
that the depth will increase linearly from AD side towards BC side, as per the following rule 
  

ytgyxH != )(),( " , 0)()()( HtgaCHBH =!== " ,  (3) 
    0)()( == DHAH , 

where α is the bottom inclination angle with respect to the horizon. 
Let us also assume that at the point C at the moment in time t=0, a tsunamigenic earthquake 

took place. The problem is to determine the time interval at which the wave will reach point A.  
The earthquake generated tsunami wave will propagate in all directions but there is a certain 
optimal trajectory γ, along which the perturbation will reach point A at the shortest time.  This is 
precisely the trajectory which we determine in order to find the time required for the propagation of 
this tsunami wave along this trajectory. As already stated, because of the relationship between 
frontal wave propagation rate and depth (1), the optimal trajectory is not a straight line, connecting 
C and A points.  In fact, it will be a curve, which lies to the right of the AC diagonal line, in 
moving from the point C to the point A - in other words, in the area of greater depth (see Figure 1).  
Thus, the time of the wave movement along the y curve is given by: 

    
2 2 2 2

1 11dx dy ( y ) ( y )d
T dx dx

gH g y tg( ) g y tg( ) g tg( ) y! ! ! !

" "+ + +!
= = = =

# # $ # # $ # $
% % % % , (4) 

 
where dxdyy /=! . To solve the tsunami travel-time minimization problem it is necessary to 
determine the minimum of the integral (4) along all possible curves y(x), connecting the points C 
and A. 

  
Fig. 2.  Diagram of the brachistochrone problem 
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Let us now make use of the mechanical analogy, assuming that there are two points A(0,0) 
and B(a,b) located on the vertical plane XOY. In this case, the OY axis is directed downward and 
coincides with the force of gravity (Figure 2).   
           It is necessary to find such curve, connecting points A and B, along which a heavy ball, by 
rolling down under the force of gravity, from point A, will reach point B in the shortest time. Such 
ball starts its movement from a state of rest (brachistochrone problem). Because of the energy 
conservation law, the ball modulus of velocity can be expressed by the following formula: 

gyv 2= .       (5) 
It can be easily seen that in this case the time required for this ball to move along the curve l, 
connecting points A and B, may be expressed as follows: 

2 2

1

1 11

2 2l l

( y ) ( y')
T dx dx

gy g y

!+ +
= =" " .   (6) 

By comparing formulas (4) and (6) one can easily see that the time T and T1, differ in terms of a 
constant factor 

1

2

tg( )
T T

!
= . 

In other words, we are to minimize the same integral as in the case, related to the tsunami wave 
propagation. The problem of the rolling ball is a classical problem of mechanics, which is solved by 
using the variation calculus method (Elsgol'ts [2]). Let us now express the ball’s travel time (6) 
from the point A(0,0) to point В(x1,y1)  as a functional of the curve shape y(x) 

 

( ) ( ) dx
y

y

g
xyTxyF

x

!
"+

==
1

0

2)(1

2

1
)()( , y(0)=0,  у1=(y(х1)).   (7) 

 
The integrand of this functional does not explicitly contain the x coordinate. So, the condition of 
minimum of this functional [2] is expressed as  
 

yF y F C!
!" = , 

where C is a constant. For this particular case (a rolling ball) 
 

2 2

2

1 ( ) ( )

(1 ( ) )

y y
C

y y y

! !+
" =

!+
.      (8) 

 
After simplifying we have 
 

2

1

(1 ( ) )
C

y y
=

!+
, 

 

     2

12

1
(1 ( ) )y y C

C
!+ = = .       (9) 
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After introducing a new parameter t, which is defined as  у' = ctg(t), formula (9) can be 
transformed to 
 

21 1
12
sin (1 cos(2 ))

1 ctg 2

C C
y C t t

t
= = = !

+
, 

 
21

1 1

2 sin( ) cos( )
2 sin ( ) (1 cos(2 ))

ctg( )

C t t dtdy
dx C t dt C t dt

y t
= = = = !

"
, 

 

( )1
1 2 2

sin(2 )
2 sin(2 )

2 2

Ct
x C t C t t C

! "
= # + = # +$ %

& '
. 

 
Finally we have the parametric form of the curve, that provide the minimum of the ball’s moving 
time 

 ( )1
2 2 sin(2 )

2

C
x C t t! = ! , ( )1 1 cos(2 )

2

C
y t= ! , 

 
Where t=0 at the starting point A(0,0). The constant C2 is equal to zero, because the curve begins 
from the zero point A(0,0). After substitution 2t=t1 we will have equations of the cycloid 
(trajectory of the point on a circle during its rolling over horizontal line y=0) in parametric form: 
 

( )1
1 1sin( )

2

C
x t t= ! ,  ( )1

11 cos( )
2

C
y t= ! , 

 
where C1/2 is the radius of the rolling circle, which can be determined on the basis of the cycloid 
passage through  the point В(x1,y1) (the second point is the starting point of the coordinates).  
So, the solution of this problem, in other words, the optimal trajectory, would be a cycloid, 
which in its parametric form will be written as follows 
 
  ))sin(( ttCx != , 
  ))cos(1( tCy != .        (10) 

At the point (x1,y1), the t parameter value will be as follows 

)
),(

1arccos(
11

1*

yxC

y
tt !== . 

 
Further, the time of the movement of the ball, from the point A to point B along the cycloid may be 
expressed by the following integral: 

 

2

2 2

1

0 0 1

1
1 11

1
2 2 1

*
*y t

sin ( t )

( y ) ( cos( t ))
T dx ( cos( t ))dt

gy g c ( cos( t ))

+
!+ "

= = " =
"

# #  

 

   *

0 2

2
2

2

1
*

t
g

C
dtC

g

t
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Let’s go back to the tsunami problem. If the tsunami wave propagates across the area with a sloping 
bottom, then instead of velocity gy2  in formulas (6) and (11), there will be the value 

ytgg !! )(" .  Consequently, for the tsunami travel-time between points (a,b) and (0,0) the 
following expression will be valid: 
 

2
1

C b
T arccos( )

Cg tg( )
= ! "

! #
,      (12) 

 
where, as already mentioned, C is a constant, which is defined on the basis of the cycloid passage 
through the point (a, b). 
 
Investigation of waveguides using wave rays 
Let us now study the process of tsunami wave propagation above the submerged ridge with flat 
sloping sides (Fig. 3). Let us also use the limited bottom slope with the fully reflecting boundary 
for such an investigation (Fig. 4). The 2D view on this rectangular water area with sloping bottom 
is presented in Figure 5. In the Cartesian coordinate system the depth is linearly increasing from 
zero on the OX axis (y = 0) by formula ( )H y tg != " , where  α   is inclination angle of the bottom 
slope. 

 
 

Fig. 3. A bottom relief simulating underwater mountain ridge 
 

 
Fig. 4. 3D-view on a wave ray trajectory above the bottom slope 
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If from a point 
1

0 2( , C )  the wave ray started in parallel to OX axis direction, it will look like a 
segment of cycloid having radius 

1
C (the radius of the rolling circle), and its trajectory can be 

described by equations 
 
   

1
x C ( t sin( t ) )!= " " , 

   
1

1   2( cos( )), ( , )y C t t ! != " # .      (13) 
 
The ray will reach an axis OX in a point (

2
x , 0) (Fig. 5), where 

2 1
x C!= " . If the plane of bottom 

has the same declination, but the decreasing of depth stops on the line  y = 
0
y  where the reflecting 

boundary is installed. The ray, after arriving to the point 
1

M  that is situated on the distance 
0
y  

from the OX axis, will reflect from the line  y = 
0
y . After reflection the wave ray will go to the 

point 
2

M  along the new cycloid with the same radius (see fig. 5). The condition of reflection of a 
wave ray on a line  y = 

0
y , is caused by symmetry of a picture relatively to the axis  y = 

0
y  that is 

true for symmetrical waveguides. The strip region  y0<y<2C1 in Figure 5 simulates the sloping side 
of the bottom ridge (waveguide). 

 
Fig. 5. Trajectory parameters during the wave ray motion above the bottom slope 

 
Let us now determine the length of a step of this truncated cycloid, and also the wave travel time 
along it. As length of a step of a full cycloid is expressed as L = 2π

1
C , the length of a step of a 

truncated cycloid (Fig. 5) will be expressed as follows 
 
  1 3 1 2 12( )L x x L x x= ! = ! ! .       (14) 
 
The value 

2 1
( )x x!  easily can be define from the equation of a cycloid (13) 

 

 0 0
1 1 1

1 1

2 2 arccos(1 ) sin arccos(1 )
y y

L C C
C C

!
" #" #

= $ $ $ $% &% &% &
' (' (

.    (15) 

The wave travel-time along this cycloid can be written as follows 
 

  1 0

1

2 2
arccos(1 )

tg( )

C y
T

Cg
!

"

# $
= % %& '

( ) *
.      (16) 
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Here α   is the inclination angle of the bottom plane to horizon, 
1
C - radius of a cycloid. If maximum 

depth 
0

H  outside of the waveguide and minimum depth on a ridge 
1

H  is given, then 
 

  0 1
1 0 1 0,   ,   (2 ),

2tg( ) tg( )

H H
C y l C y

! !
= = = "     (17) 

 
where l  is a half-width of the waveguide, if the waveguide is twice wider (

1
l =2l), but the depth 

variation remains the same. In this case the declination of bottom tg( )!  will be reduced down to 
half of the former value and will become 

  tg( )
tg( )

2

!
" = . 

Due to this, the radius of cycloid appropriate to "lateral" rays, reaching the edges (borders) of the 
waveguide, will be doubled, 

2 1
2C C= . The value y2 also will increase (

2 0
2y y= ). The wave travel-

time from the axis up to the edges of the waveguide along the new cycloid will be written as 

  1 0
2 1

1

2 4 2
arccos(1 ) 2

2( tg( )) / 2

C y
T T

Cg
!

"

# $
= % % =& '

( ) *
.   (18) 

 
The length of the cycloid step will be increased also by 2 times. Therefore, the average speed along 
the waveguide of the signals which propagate along "extreme" rays does not depend on the 
waveguide width and is determined only by the difference of depths 

0
H  and 

1
H . 

 Let us now investigate the propagation velocity of different segments of the wave front 
along the waveguide depending on their initial distance from the axis. In Fig. 6 the trajectories of 
the wave rays, which are started at distance 

1
2 y  and 

1
y away from the axis of the waveguide and 

the wave ray, traveling along the axis, are shown. 
 

 
 

Fig. 6. Wave rays in the symmetric waveguide 

Let  l be the  half-width of the waveguide, α  - angle of inclination of the planes of bottom, 
0

H  - 
depth outside of the waveguide. The basic values we need for calculation are defined as 
 
  1 0 0 1tg( ),   / tg( )H H l y H! != " # = ,      (19) 
 
where 

1
H  is the depth above a ridge. The value 

1
C  (radius of cycloid) depends on initial distance 

1
y  from an axis of the waveguide to a wave-ray starting point  

 
  

1 0 1 1
2   0( ) / ,C y y y l= + ! ! . 
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Using expressions (15) and (16) the ratio between an average wave velocity V along the waveguide 
and value 

1
y  (or 

1
C ) can be defined 

 

0 0
1 1

1 1

1 0

1

2 2 arccos(1 ) sin arccos(1 )

2 2
arccos(1 )

( )

y y
C C

C CL
V

T C y

Cg tg

!

!
"

# $# $
% % % %& '& '

( )( )
= =

# $
% %& '

* ( )

,     (20) 

where the values 
1
C  and 

0
y  are determined by formulas (17). The velocity of an appropriate wave 

motion along the waveguide depends on value 
1
C  (or y1) and it is as less, as closer the initial wave 

ray to the axis. Let's find a speed limit V, when parameter y1 is going to
0
y . Let 

0
y  differs from y1 

by a small value ε. 

   1110 2)
2

1( CCyy !
!

"="= . 

 
 Then, keeping in the formula (20) members of the least order by ε , we arrive at  
 

  
( )

( )
)(2

)(
)(

22

)(2
1

1

1 !

"##
!

""##
tggC

tgg

C

C
V $=

%%
$

+%%
& ,    (21) 

 
that corresponds to a disturbances propagation velocity along the axis of waveguide calculated by 
Lagrange formula 

1
V gH= , which is applied to the top of ridge 

 

  1
1
2 ( )

H
C

tg !
=  . 

 
 Thus, each waveguide (not only with flat bottom planes) has a specific dispersion, which is 
discovered in expansion of the initial plane wave along the waveguide during its propagation. 
Finally the initial single wave will transform into a wave "train". This dispersion ability of each 
waveguide can be measured by value 

max min
/q V V= , where 

max
V  is the running speed of fastest rays 

along the waveguide and 
min
V  the running speed of the slowest wave ray that coincides with the 

axis of waveguide. 
 Let us subsequently study the problem of  wave energy focusing by the waveguide. Above a 
flat bottom the amplitude of a circle tsunami wave is decreasing due to cylindrical divergence 
proportionally 1 2/

R
! , where R  - distance from a source. Getting into the waveguide, the wave 

amplitude is not more decreased due to cylindrical divergence. However from this moment the 
wave energy disperses by stretching the initial single wave along the axis of waveguide, that also 
causing reduction of amplitude. If the rate of amplitude loss due to wave dispersion along the 
waveguide is less than the possible amplitude loss due to cylindrical stretching of the front, in this 
case a waveguide has focusing properties. Mathematically it can be written as follows: 
 

  1/ 2

max min

2
( )V V T R

K

!
" # < .        (22) 
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Here T - time of motion of a waveguide waves, K - value indicating, what part of circle front of an 
incident wave has got in the waveguide, R - distance from the wave source up to a position of front 
in the waveguide after time period T. Thus, not every waveguide causes a focusing effect. It is the 
broader waveguides with small depths differences 

0 1
( )H H!  that have the greatest focusing 

ability. The most favorable situation for focusing arises when  the tsunami wave source is situated 
above the waveguide. 
  Let us now remark about asymmetrical waveguides, where the declination of flat bottom is 
various for different sides from the ridge. Let the declination of one side be 2 times greater, than the 
other. The depth outside the waveguide is equal to 

0
H  and on the ridge (axis) - 

1
H . Let us consider 

trajectories of "lateral" rays, which reach the borders of the waveguide. In the initial moment they  
lay out on distances 

2
y  and 

1
y  = 2

2
y  on both sides from the axis of waveguide (Fig. 7). 

 
Fig. 7. Trajectories of "lateral" rays in an asymmetric waveguide 

 
As previously-stated, the radius of cycloids, along which wave rays propagate above the more flat 
side, is twice greater than the radius of both of the rays under consideration, when  propagating 
above the other side which has greater inclination. As seen in Figure 7, both rays have identical-
length paths before reaching cross-section x = 

4
x , and each consisting of two cycloid pieces. Thus, 

on the cross-section x = 
4
x  the rays arrive simultaneously. The cross point M of these "lateral" 

wave rays is not located on the axis of the waveguide Ox. In spite of point M being a cross point of 
wave rays (a caustic), the noticeable increase of a wave amplitude in it is not detected, because the 
rays do not come to this point simultaneously. Let us show this as

1 2
2y y= , then

3 1
2x x= . The 

wave travel-time along the "large" cycloid is more than twice as that along the "small" (time T0). 
Taking into account that the travel-time along the curve PC is equal 2T0, the  travel-time along the 
curve PA will be less than T0, because the length of PA is less than the length of AM. Furthermore,  
along  PA the depths are greater. Moreover, the wave travel-time along the curve AM will be less, 
than along BM, because the length of AM is less than the length of BM, and the curve AM is 
located along greater depth. Thus, the wave reaching point M along the curve PM will arrive much 
earlier, than that along the curve QM. Let us also estimate the propagating velocity of "lateral" rays 
along the waveguide, i.e. 

max
V . These rays will arrive simultaneously at the cross-section  x = x4  

and  their travel-time will be 3T0. Therefore the average wave speed along the waveguide is 
expressed as 

1 0
/x T , that is equal to 

max
V  for symmetrical waveguides with the same depths on a 

ridge and the outside of the waveguide. Therefore the statement about the independence of the 
wave propagating velocity along the waveguide from its width is correct also for asymmetrical 
waveguides. 
  Now -  as mentioned above - let us consider a ratio of tsunami amplitudes in the wave train 
that arises as a result of dispersion. Using relation (20), we find some values of propagating 
velocity V along the ridge for wave rays, which are disposed at different distances from the axis of  
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the waveguide. The derived values of propagating velocity V for that waveguide, suggest that the 
relation V from 

1
y  is rather close to linear, but for rays initially disposed closer to the waveguide 

edge, the varying rate of V depending on distance 
1
y  is lower than for rays initially located closer 

to the axis of  the waveguide. Thus, the dispersion of the waveguide impacts a little bit stronger on 
the slowly moving part of a “wave train” and, consequently, the leading waves from a dispersing 
signal have slightly greater amplitude, than in the  "tail" of the same “wave train”. 
 In the case when on an entrance of the waveguide is perpendicular to its axis there are not 
one, but two consecutive waves. Let us assume that between positive maximums of these waves the 
initial distance is equal to 2λ . Then above the waveguide the waves will transform into “wave 
trains”. The "leading" part of the second wave can reach the "tail" of the first wave and that will 
cause amplification of wave amplitude above an axis of the waveguide. It is possible to determine 
the causing conditions. Assuming that the initial distance between wave maximums in the 
waveguide is equal 2λ .  Let the maximum and minimum wave rays propagating velocities of the 
waveguide be equal to 

max
V  and 

min
V . The distance between the "tail" of the first wave and 

"leading" part of the second wave will be expressed as 
 
  

min max
2l V T V T!= " + # " ,        (23) 

 
where T is the propagating time. Therefore, in time

0
T , when l will become zero, the dispersed 

signals from both waves will be imposed on each other, and that will cause the amplification of 
oscillations near the axis of waveguide on the distance 

0 min
T V!  from its beginning. Hereinafter if 

there is imposing (superposition) of signal, the oscillation frequency in the waveguide fades out, as 
the process of waveguide dispersion promotes easing (attenuation) of both wave trains. Thus, the 
maximum level fluctuation in the waveguide is watched apart 

0 min
T V!  from a beginning of the 

waveguide. The time period 
0
T  is determined by the characteristics of the waveguide 

 

  
0

max min

2
T

V V

!
=

"
.         (24) 

 
If the initial wave signals, propagating in the waveguide, have negative parts, then a picture of 
interaction of this waveguide waves will be more complicated. 
 
Numerical experiments 
To confirm the theoretical description of tsunami wave behavior in the waveguide of the indicated 
type, numerical modeling was carried out of tsunami wave propagation above underwater ridge, 
having a model relief as shown in Figure 3.  A numerical algorithm based on variables splitting 
method (Titov [3]) was used for tsunami propagation modeling. The size of the computational area 
was 720 km x 400 km (720 x 400 grid-points), and the width of the waveguide was  200 km. The 
depth along an axis of the waveguide was equal to 500 m, and outside of the waveguide - 1,000 
meters. The input tsunami was 4 meters high and was shaped as a long narrow rectangle (20 x 200 
grid-points) with the profile, which is determined by the expression 
 

  2 2
10 2

i
sin

! !
"

# $
= + %& '

( )
,  (i=1,...,20).    (25) 
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Fig 8A-8E. Water surface above the waveguide in various time moments 

 
Figures 8A-8E show the ocean surface in different moments of wave propagation along the 
waveguide with flat sides (Fig. 3). The initial elevation of the water surface (fig. 8A) is forming a 2 
meters high tsunami wave. The water surface at subsequent moments of time (2000 sec, 4000 sec, 
8000 sec, 10000 sec) is shown in Fig. 8B-8E. As shown, that initial wave expands along the axis of 
waveguide and is transformed into a “wave train" with narrow front that completely confirms the 
theoretical results.  
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Fig. 9. Tsunami time series across the waveguide. 

 
Figure 9 shows tsunami time series (marigrams) at a distance of 650 km from the tsunami source 
(the total length of the computational area being equal to 720 km). These marigrams correspond to 
20 grid-points (650, 100+10(j-1)), which are located across of the computational area. Here 
j=1…20 is an index of time series (Fig. 9). Numerical results confirm the wave amplitude growth at 
the waveguide axis. Time series with index 11 (Fig. 9) was recorded just at the waveguide axis. The 
maximum tsunami wave height was detected here. 
 The profiles of water surface along the waveguide axis at the different time moments are 
shown in Figure 10. The Figure 11 presents free surface profiles along the same line (j=200) for the 
case of flat bottom (depth is equal to 1000 m) without any bottom ridge. In both computational 
experiments the initial 4 meters high source (25) generates the identical 2 meters high wave (top 
drawings in Figures 10 and 11). 

 
Fig. 10. Wave profile visualizations during tsunami propagation above the bottom ridge 
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As an example, let us estimate the average propagating velocities of fastest and slowest waves 
along this waveguide. For numerical computations the following parameters of the waveguide were 
used: H0=1000 m, H1=500 m. The fastest wave signal moves along the “lateral” wave ray having 
radius  

  0 1
1
2tg( ) 2

H y
C

!
= = , 

where H0 is the depth outside bottom ridge. The other parameters are linked by formula 

   y0 = y1/2 = C1 . 
 
Expression for the fastest wave propagation velocity (20) in this case will be written as 
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Here )(110 !tggCgHV "==  is the slowest wave propagation speed (above the waveguide 
axis). This estimate is in good agreement with numerical results (Fig. 10). 

 
Fig. 11. Wave profile visualizations during tsunami propagation above the flat bottom 
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The comparison of wave amplitudes in the waveguide above the flat bottom indicates the 
significant amplitude growth above the axis (199 cm as compared to 85 cm without waveguide). In 
other words the amplitude of a tsunami wave which is propagating along this waveguide doesn’t 
decrease during the  first 3 hours of propagation. 
 A number of different ridge profiles were used in numerical computations. The profile of the 
bottom ridge was determined by the following formula 

  
1 0 1

0 0

- k
y y

H( y ) H ( H H ) sin( )
y y

!
= + " # ,    (26) 

where y is the distance from an axis, H1 - the water depth on the axis, H0  - the depth outside the 
waveguide and  k is parameter, which varies from -150  to  +150. When k=0 the ridge sides are flat. 
Waveguide sections for k=-100, k=0, k=+50, k=+150 (from the top to the bottom of the figure) are 
shown in Fig. 12. 
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Fig 12. Profiles of the bottom ridge for different values of parameter k 

 
 
The comparative analysis of numerical results presented in Table 1, leads to the conclusion that the 
most effective waveguide for the generated waves, is the one with flat sides (parameter k=0). Such 
a waveguide yields the greatest wave amplitude during propagation of a tsunami with the initial 
height of 2 meters (Table 1). 
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  Table 1. 
Coefficient k Minimum wave amplitude Maximum wave amplitude 

- 150 - 88 + 87 
- 100 - 82 + 113 
- 50 - 91 + 121 

0 - 167 + 184 
50 - 110 + 119 

100 - 73 + 45 
150 - 106 + 60 

 
 Numerical modeling of tsunami propagation along the real Pacific waveguide was carried 
out with the model tsunami source, which produced the initial two meters high tsunami wave. The 
600x720 points computational grid included the Izu-Nanpo island chain southward of Japan (Fig. 
13). The bottom relief was taken from Smith-Sandwell 2 arc minute Global digital bathymetry [4]. 
The initial tsunami source has the same profile as in previous computation experiments but its 
length is equal to the whole computational area width (600 grid steps). Looking at Figures 14(a-c) 
it is seen that wave energy is concentrated above the bottom ridge. Tsunami waves here are much 
higher than ones outside this natural waveguide. The maximum of tsunami height was detected at 
the Izu peninsula, where the bottom ridge comes out from the deep ocean onto a shelf. 

 

Fig. 13. The bottom relief in numerical computations of tsunami 
propagation along the Izu-Nanpo island chain 
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Fig. 14. Water surface during tsunami wave propagation above the Izu-Nanpo bottom ridge 

 
 Another example of the ocean bottom ridges influence to the tsunami propagation process 
can be found in another study [5]. In this paper some field data of tsunami 26 December 2004 and  
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results of numerical modeling of its global propagation are presented. Based on a comparative 
analysis of the maximum of the calculated amplitude in World Ocean (Fig. 15) and the World Ocean 
bathymetry (Fig. 16),  it may be concluded that some bottom ridges (dash lines in Fig. 16) acted as 
tsunami waveguides. The travel-time charts of the tsunami of 26 December 2004 [5] also confirm 
the waveguide mode of tsunami propagation above some Pacific bottom ridges. 

  
Fig. 15. Maximum of the calculated amplitude in World Ocean [5] 

 

 
Fig. 16. Ocean bathymetry that was used for numerical modeling [5] 
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