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ABSTRACT 

 

   The occurrence of 2004 Indian Ocean tsunami enhanced the necessity for a tsunami early 

warning system for countries bordering the Indian Ocean, including Thailand.  This paper 

describes the assimilation of real-time deep sea buoy data for tsunami forecasting along Thailand’s 

Andaman coastline. Firstly, the numerical simulation (by the linear and non-linear shallow water 

equations) was carried out for hypothetical cases of tsunamigenic earthquakes with epicenters 

located in the Andaman micro plate. Outputs of the numerical model are tsunami arrival times and 

the maximum wave height that can be expected at 58 selected communities along Thailand 

Andaman coastline and two locations of DART buoys in the Indian Ocean. Secondly, a “neural” 

network model (GRNN) was developed to access the data from the numerical computations for 

subsequent construction of a tsunami database that can be displayed on a web-based system. This 

database can be updated with the integration from two DART buoys and from several GRNN 

models. 

 

Key words: Numerical modeling, Neural network modeling, Web-based online,  

Data assimilation, GRNN, DART Buoy 
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1. Introduction 

 

   The 2004 Indian Ocean tsunami was responsible for the greatest damage in history and a death 

toll of more than 200,000 people.  The highest number of victims (both confirmed dead and 

missing) was in Indonesia (163,795), followed by Sri Lanka (35,399), India (16,389) and Thailand 

(8,345)(International Federation of Red Cross and Red Crescent, 2005). In Thailand, many resorts 

in the low-laying coastal area of Kao Lak experienced serious destruction and more than 2,000 

people lost their lives.  

   Because of the great damage and destruction caused by this 2004 disaster, it is necessary to 

review the present tsunami warning systems and examine three important aspects - specifically 

timing, accuracy and stability. Whitmore and Sokolowski (1996) developed the following 

approach in forecasting tsunami heights. They used a nonlinear long-wave numerical model to 

develop a database of water levels for 15 hypothetical tsunamigenic earthquakes in the northwest 

Pacific, for events ranging in moment magnitude from 7.5 to 9.0. According to this method, when 

a possible tsunamigenic earthquake occurs, a comparison of pre-computed and of measured water 

levels near the tsunamigenic source from the database helps identify the closest event and provides 

an estimate of tsunami heights for the Pacific. According to another numerical simulation 

technique introduced by the Japan Meteorological Agency (JMA) in April 1999(JMA, 2006), 

tsunami generation and propagation for 100,000 different cases (epicenter, depth, magnitude and 

fault geometry) are calculated in advance and the estimated tsunami heights and arrival times 

along the coast are stored in a database for use in the warning system. Still, another method for 

quick tsunami forecasting database for Korea (Lee et al., 2005), uses a superposition of a linear 

long wave solution which describes tsunami propagation from tsunami source units of 5.5 km. x 

5.5 km. area and 1.0 height along the active fault zone in the Sea Japan/East Sea.  Finally, 

NOAA’s World Data Center A – Tsunami (WDC, 2005) has collected an updated tsunami 

database for the Atlantic, Indian, and Pacific Oceans, as well as the Mediterranean and the 

Caribbean Seas. This NGDC tsunami database - dating from 2000 B.C. to the present - includes a 

listing of historical tsunami source events and run-up locations throughout the world. 

   The first model simulation results of the Indian Ocean tsunami were obtained from the 

“MOST” (Method of Splitting Tsunamis) model (Titov and Synolakis, 1998) and were posted by 

Titov on the Internet Tsunami Bulletin Board (within 12 hours after the earthquake). MOST is part 

of the tsunami forecasting and warning system under development for the Pacific Ocean (Titov et 

al., 2005) that will provide fast real time estimates of tsunami amplitudes using preset models, 

real-time seismic data and, most importantly, deep-ocean tsunami amplitude data from a network 

of deep-ocean pressure sensors. Other researchers also ran models and posted results. Results of 

MOST and of other model runs have been widely used worldwide by the media for early planning 

of relief efforts and for post-tsunami field surveys. Unlike the Pacific, the Indian Ocean does not 

yet have a network of deep ocean pressure sensors, and so coastal tide gauges provide the only 

direct measurements of Indian Ocean tsunami amplitudes.  

   On May 30, 2005, five months after the December 26, 2004 tsunami, Thailand begun 

operating a National Disaster Warning Centre (NDWC, 2006) to monitor and relay critical 

information on all natural disasters. For the tsunami warning system, the NDWC begun using data 

on earthquake magnitude and depth for estimates of the potential risk from possible tsunamis. In 

November 2006, the NDWC, in cooperation with USAID, deployed the first DART buoy in the 

Indian Ocean. However, to establish an operating tsunami warning system, Thailand also required 

the development of a tsunami database along its Andaman Sea coastline.  

 
Science of Tsunami Hazards, Vol. 27, No. 3, page 31 (2008) 



 

   The present study describes the development of a hybrid model that was developed by the 

integration of three techniques. First, a numerical model of linear and non-linear shallow water 

waves is introduced. Secondly, the neural network model is described in detail and the results of 

the database are displayed at an internet website. Thirdly, the database is updated with the 

assimilation from two DART buoys in the Indian Ocean, making use of several GRNN models.  

 

2 Methodology 

 

2.1 Numerical computation 

A numerical model (similar to that of Shuto, 1997) was set up using linear and non-linear 

shallow water equations for estimation of tsunami propagation  and of terminal effects. Equations. 

(1) – (3) are the linear equations without bottom friction in two-dimensional flow.  
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Where ! is the vertical displacement of the water surface above still water level, R is the earth’s 

radius, t is time , g is the gravitational acceleration, M and N are discharge fluxes in the " (along a 

parallel of latitude) and # (along a circle of longitude) directions and f (2$sin#) is the Coriolis 

coefficient. 

   Generally, a relatively smaller grid mesh is required to compute the tsunami along the coast 

where the water depth is shallow and variation of local topography has an important effect on 

tsunami behavior. However, it is difficult to use a smaller grid mesh in the total region of the large 

computational domain, such as the near shore of Thailand’s Andaman coastline. Hence, the 

shallow water equations are applicable. The nonlinear shallow water equations in a Cartesian 

co-ordinate system  consist of the continuity (Eq. (4)), and momentum equations in x (Eq. (5) and 

y (Eq. (6)):   
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where “x” and “y” are horizontal coordinates, D is the total water depth, and n is Manning’s 

roughness. The application of the long-wave equations for tsunami modeling have also been 

described by Shuto et al. (1986), Kowalik and Murty (1993), and Titov and Synolakis (1998).  

   The computing domain covering the Andaman Sea coastline is shown in Fig. 1. The total 

region is bounded by latitude 2
O
 S longitude 85

O
 E to latitude 18

O
 N longitude 105

O
 E. Dynamic 

linking is accomplished in the boxed area. According to this method, larger grids in the deep sea 

are overlapped and dynamically linked with grids having 1/4 of the width in the shallower region 

(linking of 1.85 km to 462.5 m). During the computation, water level and discharge are exchanged 

satisfying a dynamic equilibrium along the boundary of these two regions. This process is repeated 

until the required grid resolution is obtained. 

 

 
 

Fig. 1 Computing Domain 

 

  

   The initial condition corresponds to still water with the specified surface wave at the source of 

the earthquake. The algorithm of Mansinha and Smylie (1971) provides the initial surface wave 

through the seafloor deformation - based on input seismic parameters that include strike, dip and 

slip angles, the amount of the slip displacement and the location of the fault. The tsunami sources 

and earthquake epicenters for the Andaman micro plate were obtained from historic earthquakes 

(USGS) (Lay et al., 2005). Figure 2 shows the model region, which covers most of Thailand’s 

Andaman coastline with postulated earthquakes and tsunamis. Prior to the simulation, the model 

was calibrated with measurements of the tsunamis of 1881, 1941 and 2004. 
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The moment magnitude of postulated earthquakes was varied from 6.0 – 9.0.  The relationship 

between moment magnitude and the fault dimensions were obtained from Donald and Kevin 

(1994) and Kanamori, H(1977). In total, there are 420 cases in the simulation.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Hypothetical earthquakes 

 

 

   2.2 Neural network    

   The neural network (NN) techniques used to solve problems in civil engineering began in the 

late 1980s (Flood and Kartam, 1994). Their applications in simulating and forecasting problems in 

oceanography are relatively recent (Hsieh and Pratt, 2001; Supharatid, 2003; Cigizoglu, 2005). 

Unlike other conventional-based models, the NN model is able to solve problems without any 

prior assumptions. As long as enough data is available, a neural network will extract any 

regularities or patterns that may exist and use it to form a relationship between input and output. 

Additional benefits include data error tolerance and the characteristic of being data-driven, thereby 

providing a capacity to learn and generalize patterns in noisy and ambiguous input data. 

   The General Regression Neuron Network (GRNN) proposed by Specht (1991) does not 

require an iterative training procedure as required in the back propagation method. It approximates 

any arbitrary function between input and output vectors, drawing the function estimate directly 

from the training data. In addition, it is consistent in that, as the training set size becomes large, the 

estimation error approaches zero with only mild restrictions on the function. The GRNN is used 

for the estimation of continuous variables, as in standard regression techniques. It is related to the 
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radial basis function network and is based on a standard statistical technique called kernel 

regression. The GRNN is a feed forward neural network best suited to function approximation 

tasks such as system modeling and prediction. It is a four-layer network with one hidden layer 

described in Fig. 3.  

INPUT OUTPUTHIDDEN LAYER

Numerater

Denominater

 
Fig. 3 Basic Procedure of GRNN 

 

   The input is a state space denoted by X (Epicenter, moment magnitude and earthquake depth). 

The estimated value (!) is calculated by Eq. (7) at 58 selected communities and 2 DART buoy 

locations (see Fig. 4). In this study, we used the cross training technique. Therefore, there are 210 

hypothetical cases for training and 210 cases for testing the network. The input parameters are 

varied according to Table 1. 
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Where k is the number of input patterns is a scalar function representing the Euclidian square from 

the new input pattern to the training input pattern, and " is a single smoothing parameter, which 

determines how tightly the network matches its prediction to the data in the training patterns. 

 
Fig. 4 Location of 58 selected communities and 2 DART buoys 
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Table 1 Input parameters and outputs for GRNN-1 model 

 

Inputs Outputs 

Epicenter     Fixed at 12 locations 

Earthquake magnitude (Mw) 
6.0, 6.5, 7.0, 7.5, 8.0, 8.5 and 

9.0 

Earthquake depth (D) 10, 20, 30, 40 and 50 km. 

Maximum wave 

height in 58 risked 

communities along 

the coastline and 2 

DART buoy locations 

 

 

 

   By definition, the regression of a dependent variable y on an independent x, estimates the most 

probable value for y, given x and a training set. The regression method will produce the estimated 

value of y which minimizes the Mean-Squared Error (MSE). The GRNN is a method for 

estimating the joint probability density function (pdf) of x and y, given only a training set. Because 

the pdf is derived from the data with no preconceptions about its form, the system is perfectly 

general.  

   To evaluate the performance of GRNN, two common statistics, Efficiency Index (EI) and Root 

Mean Square Error (RMSE) are used as given in Eqs. (8) and (9). 
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where Op and Hp are the target output and forecasted output, respectively. O  is the mean value of 

the target output. 

 

   2.3 Data assimilation  

   In real operation, the initial warning decisions described in section 2.2 are based only on 

earthquake parameters. Without data assimilation from the direct measurement, results are 

susceptible to large errors of seismic source estimates. It has to be mentioned that the tsunami 

confirmation by coastal tide gages may come too late for timely evacuation measures. This can 

lead to a high false alarm rate and ineffective local emergency response. In this study, the arrival 

time of tsunami wave is detected by 2 DART buoys (see also Figure 4). The 1
st
 and 2

nd
 DART 

buoys were installed in the Indian Ocean at lat. 8.9
O
 N, long. 88.5

O
 E (No. 23401) and lat. 0.05

O
 N, 

long 81.88
O
 E (No. 54301), respectively. The previous GRNN-1 model was improved (GRNN-1.1, 

GRNN-1.2, GRNN-2). Difference in these models is the number and the position of DART buoys 

to be input to the model. Details of input are given in Tables 2 -4.  

 

 

 
Science of Tsunami Hazards, Vol. 27, No. 3, page 36 (2008) 



 

 

 

 

 

Table 2 Input parameters and outputs for GRNN–1.1 model 

 

 

Inputs  Outputs 

Epicenter Fixed at 12 locations 

Earthquake magnitude (Mw) 
6.0, 6.5, 7.0, 7.5, 8.0, 8.5 and 

9.0 

Earthquake depth (D) 10, 20, 30, 40 and 50 km. 

DART buoy No. 23401 

Maximum wave 

height in 58 selected 

communities along 

the coastline  

 

 

Table 3 Input parameters and outputs for GRNN–1.2 model 

 

Inputs  Outputs 

Epicenter Fixed at 12 locations 

Earthquake magnitude (Mw) 
6.0, 6.5, 7.0, 7.5, 8.0, 8.5 and 

9.0 

Earthquake depth (D) 10, 20, 30, 40 and 50 km. 

DART buoy No. 54301  

Maximum wave 

height in 58 selected 

communities along 

the coastline  

 

 

Table 4 Input parameters and outputs for GRNN–2 model 

 

Inputs  Outputs 

Epicenter Fixed at 12 locations 

Earthquake magnitude (Mw) 
6.0, 6.5, 7.0, 7.5, 8.0, 8.5 and 

9.0 

Earthquake depth (D) 10, 20, 30, 40 and 50 km. 

DART buoy Nos. 23401 and 54301 

Maximum wave 

height in 58 selected 

communities along 

the coastline  

 

 

2. Discussion of Results 

 

   Some examples of the maximum simulated tsunami wave height for Case study A, D, F and J 

are depicted in Fig. 5. They are shown only for the earthquake of magnitude Mw 9 and depth of 10 

km. It was found that in all cases the main energy lobe is directed perpendicular to the elongated 

source in the deep water. These figures also display the wave height enhancement in the shallow 

water and especially in proximity to 6 provinces along Thailand’s Andaman coastline.  Regions 

in the northwest of Thailand show considerable energy concentration through refraction process.  
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(a) Case A  

 

 
(b) Case D 

 

 
© Case F 
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(d) Case J 

 

Fig. 5 Maximum tsunami wave height 

 

 

   Figure 6 shows scatter plots of wave height at some communities (Talaenok, Namkem, Patong 

and Phiphi) and at 2 DART buoys in the Indian Ocean from the GRNN-1 model. Straight lines 

show perfect agreement. In general, agreements between the GRNN and numerical model are 

satisfactory with the EI more than 0.90 and RMSE less than 1 m. However, some deviations are 

found in medium to large wave heights (Most GRNN model gave underestimated results). 

 

 

 

 

 

 

 

 

 

 

      

 

 

(a) Talaenok                          (b) Namkem 
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(c) Patong beach                     (d) Phiphi Island                                         

         
(e) Ao Makam                      (f) Ko Sarai 
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Fig. 6 Scatter plots of Tsunami wave height from GRNN – 1 Model 
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   The outputs of GRNN-1 model in term of arrival time and wave height are stored and 

displayed on a website. By moving a cursor to the location where the earthquake occurred (Fig. 

7a), 2 inputs (Earthquake magnitude and depth) are needed to fill (Fig. 7b). The program then 

selects a database corresponding to the event and displays the arrival time and wave height in 6 

provinces along Thailand’s Andaman coastline (Fig. 7c). Then, by moving the cursor to a location 

of where you are and press enter, the arrival time and wave height for communities at risk in that 

province will be displayed (Fig. 10d). Therefore, the people in several communities can 

understand their tsunami vulnerabilities within 5 minutes after the earthquake occurrence and can 

prepare themselves for safe evacuation according to the tsunami evacuation route map. 

 

 

     
(a)         (b) 

 

        
(c)         (d) 

 

Fig. 7 Web-based online tsunami warning system for Thailand’s Andaman Coastline 

 

 

   However, in real practice, the confirmation of tsunami wave arrival is one of interesting topics 

for researchers. Therefore, several false alarms may be expected. In this paper, we try to use the 

real-time deep sea buoy for making an assessment of the severity of the waves at the risked 

communities. Therefore, we improved the previous GRNN model (GRNN-1) by including wave 

height at the DART buoys (Nos. 23401 and 54301) that were installed in the Indian Ocean. The  
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forecasted outputs of tsunami height at the same 58 communities can be computed as given in 

Table 5. Scatter plots of tsunami waves at 6 communities same as Fig. 6 is also shown in Figs. 8 to 

10. 

 

Table 5 Statistical parameters comparison 

 
 

GRNN-1 Model GRNN-1.1 Model GRNN-1.2 Model GRNN-2 Model 
Communities 

EI RMSE (m) EI RMSE (m) EI RMSE (m) EI RMSE (m) 

Klongkong 0.92 0.40 0.97 0.27 0.97 0.27 0.98 0.24 

Kaopayam 0.95 0.41 0.98 0.26 0.97 0.30 0.98 0.29 

Bangben 0.92 0.39 0.97 0.27 0.97 0.27 0.97 0.24 

BanChakle 0.94 0.09 0.97 0.06 0.97 0.06 0.98 0.06 

Talaenok 0.93 0.51 0.98 0.32 0.97 0.34 0.98 0.30 

Suksamlan 0.95 0.44 0.98 0.28 0.98 0.31 0.98 0.29 

BanTream 0.96 0.41 0.98 0.27 0.98 0.28 0.98 0.27 

Tunglaaon 0.95 0.17 0.98 0.11 0.98 0.11 0.98 0.12 

Tungdab 0.96 0.54 0.98 0.42 0.98 0.44 0.98 0.47 

Tungtuk 0.95 0.58 0.98 0.36 0.98 0.38 0.98 0.43 

Namkem 0.94 0.60 0.98 0.40 0.98 0.41 0.98 0.38 

Bandsak 0.96 0.63 0.98 0.43 0.98 0.44 0.98 0.41 

Pakarang 0.97 0.66 0.98 0.47 0.98 0.48 0.98 0.47 

Bangniang 0.97 0.73 0.98 0.57 0.98 0.60 0.98 0.59 

Tablamu 0.97 0.52 0.98 0.44 0.98 0.48 0.98 0.48 

Tabyang 0.98 0.56 0.98 0.49 0.98 0.53 0.98 0.56 

Nairai 0.97 0.59 0.98 0.46 0.98 0.49 0.98 0.50 

Natai 0.97 0.58 0.98 0.44 0.98 0.46 0.98 0.46 

Klong Klain 0.92 0.14 0.97 0.09 0.97 0.09 0.98 0.08 

Klongbon 0.93 0.22 0.97 0.16 0.97 0.16 0.97 0.15 

Plunai 0.95 0.25 0.97 0.18 0.97 0.18 0.97 0.18 

Bangpat 0.89 0.14 0.95 0.10 0.94 0.10 0.96 0.09 

SaunMaprawe 0.97 0.56 0.98 0.42 0.98 0.42 0.98 0.45 

Naiyang 0.97 0.66 0.97 0.62 0.97 0.63 0.97 0.59 

Pasak 0.97 0.50 0.98 0.39 0.98 0.39 0.98 0.41 

Kamala 0.97 0.56 0.98 0.43 0.98 0.45 0.98 0.46 

Patong 0.96 0.59 0.97 0.51 0.97 0.52 0.96 0.56 

Karon 0.97 0.70 0.97 0.66 0.97 0.67 0.98 0.58 

Kata 0.97 0.71 0.97 0.65 0.97 0.66 0.98 0.64 

Saiyuan 0.96 0.29 0.97 0.22 0.97 0.22 0.97 0.23 

Palai 0.95 0.23 0.98 0.14 0.98 0.14 0.99 0.12 

Aomakam 0.94 0.23 0.98 0.14 0.98 0.14 0.98 0.12 

Bangku 0.91 0.21 0.96 0.13 0.96 0.14 0.97 0.12 

Phaklok 0.93 0.24 0.98 0.14 0.98 0.14 0.98 0.12 

Kaoaen 0.93 0.58 0.95 0.45 0.95 0.47 0.96 0.44 

Leam Sak 0.87 0.19 0.94 0.14 0.93 0.14 0.95 0.12 

Tatonglang 0.91 0.30 0.96 0.19 0.96 0.19 0.97 0.17 

Khao Kuao 0.94 0.27 0.96 0.21 0.97 0.20 0.97 0.20 

Ao Nang 0.92 0.37 0.97 0.24 0.97 0.23 0.97 0.22 

Phiphi 0.94 0.43 0.96 0.35 0.96 0.35 0.96 0.36 



 

 

         

Khlong 

Prasong 0.89 0.20 0.96 0.13 0.95 0.14 0.97 0.12 

Khlongruao 0.87 0.27 0.95 0.18 0.95 0.18 0.96 0.16 

Khaopu 0.94 0.38 0.97 0.27 0.98 0.25 0.98 0.25 

Klongtop 0.94 0.45 0.97 0.30 0.97 0.29 0.98 0.27 

Pak Klong 0.93 0.35 0.98 0.19 0.97 0.22 0.99 0.17 

Musa 0.88 0.25 0.94 0.18 0.94 0.18 0.95 0.16 

Dunun 0.90 0.24 0.96 0.16 0.96 0.16 0.97 0.14 

Hang Lang 0.91 0.32 0.97 0.20 0.97 0.20 0.98 0.17 

Khao Phul 0.92 0.29 0.97 0.18 0.97 0.18 0.98 0.16 

Phla Muang 0.90 0.15 0.95 0.10 0.95 0.10 0.96 0.09 

Lang Khao 0.93 0.36 0.97 0.24 0.98 0.22 0.98 0.21 

Na Hedchum 0.91 0.20 0.96 0.14 0.96 0.14 0.97 0.12 

Na Hedchum 0.92 0.22 0.97 0.14 0.97 0.14 0.98 0.12 

Tong Kanan 0.88 0.23 0.95 0.16 0.94 0.17 0.95 0.15 

Son Klang 0.92 0.36 0.97 0.23 0.97 0.22 0.98 0.19 

Taolosai 0.91 0.20 0.96 0.14 0.96 0.14 0.97 0.12 

Klongkike 0.87 0.21 0.94 0.15 0.93 0.15 0.95 0.13 

Ko Sarai 0.93 0.49 0.97 0.31 0.97 0.31 0.98 0.26 

Average 0.93 0.38 0.97 0.28 0.97 0.29 0.97 0.28 

 

 

 
(a) Talaenok                    (b) Namkem 

 
(c) Patong beach                (d) Phiphi Island 

 
Science of Tsunami Hazards, Vol. 27, No. 3, page 43 (2008) 

0

5

10

15

20

0 5 10 15 20

Numerical Model

G
R

N
N

RMSE = 0.40 

EI = 0.98 

0

5

10

15

20

0 5 10 15 20

Numerical Model

G
R

N
N

RMSE = 0.35 

EI = 0.96 

0

5

10

15

20

25

0 5 10 15 20 25

Numerical Model

G
R

N
N

RMSE = 0.51 

EI = 0.97 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Numerical Model

G
R

N
N

RMSE = 0.32 

EI = 0.98 
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Fig. 8 Scatter plots of Tsunami wave height from GRNN – 1.1 Model 
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(c) Patong beach                   (d) Phiphi Island 
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(e) Ao Makam                       (f) Ko Sarai 

 

 

Fig. 9 Scatter plots of Tsunami wave height from GRNN – 1.2 Model 
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  (c) Patong beach                     (d) Phiphi Island  
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(e) Ao Makam                        (f) Ko Sarai 

                      

 Fig. 10 Scatter plots of Tsunami wave height from GRNN -2 Model 

 

   It can be seen from Table 6 that, on the  average, the EI increases 4 % while the RMSE 

decreases 26 % for all last 3 models (GRNN-1.1, GRNN-1.2, GRNN-2) compared to the first 

GRNN model (GRNN-1). These significant improvements of EI and RMSE indicate the essential 

requirement of real-time monitoring from these buoy data for the confirmation of tsunami warning 

massages to the people. We could not see significant difference among the last 3 models in Figs. 8 

to 10.  Therefore, the GRNN-1.1, GRNN-1.2, and GRNN-2 models can be used to compute the 

updated value of wave heights along 58 communities at risk, depending on the time arrival of 

wave at the buoys. 

 

6. Conclusions 

  

   In this study, we present the development of the Tsunami Warning System for Thailand’s 

Andaman Sea coastline by using 3 combination techniques; numerical simulation, GRNN and web 

base developing, and data assimilation from DART buoys. The numerical simulation (by the linear 

and non-linear shallow water equations) was carried out from the 420 hypothetical cases of 

postulated tsunamigenic earthquakes with epicenters on the Andaman micro plate in the Indian 

Ocean. The outputs are tsunami arrival time and the maximum tsunami wave height at 58 selected 

communities (along Thailand Andaman coastline) and at 2 locations of DART buoy in the Indian 

Ocean. The model was calibrated with the data of the tsunamis of 1881, 1941 and 2004. The 

computed results from the numerical model were used to train and test the GRNN model with only 

4 input parameters (latitude, longitude and earthquake magnitude and depth) by the cross training 

technique. Good accuracy of the forecasted results by the GRNN (GRNN-1) model was found 

from the efficiency index (EI > 0.90) and the root mean square error (RMSE < .38 m).  Then, the 

results were used to construct the tsunami database which could be displayed on the internet 

website. Finally, we assimilated the data from two DART buoys in the Indian Ocean to the 

previous model, thus deriving three additional GRNN (GRNN-1.1, GRNN-1.2, and GRNN-2) 

models. The additional GRNN models gave a higher performance (EI increases of 4 % and RMSE 

decreases of 26 %) compared to the GRNN-1 model. The selection of the models is dependent on 

the arrival time of a tsunami. Thus, thesr models can be used to confirm and update tsunami 

generation and potential tsunami heights near the epicenter and at Thailand’s coastline.    
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