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ABSTRACT 
 
 

     A numerical study which takes into account wave dispersion effects has been carried 
out in the Indian Ocean to reproduce the initial stage of wave propagation of the tsunami 
event occurred on December 26, 2004. Three different numerical models have been used: 
the nonlinear shallow water (nondispersive), the nonlinear Boussinesq and the full 
Navier-Stokes aided by the volume of fluid method to track the free surface. Numerical 
model results are compared against each other. General features of the wave propagation 
agreed very well in all numerical studies. However some important differences are 
observed in the wave patterns, i.e., the development in time of the wave front is shown to 
be strongly connected to the dispersion effects. Discussions and conclusions are made 
about the spatial and temporal distribution of the free surface reaffirming that the 
dispersion mechanism is important for tsunami hazard mitigation.  
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INTRODUCTION 
 
     The recorded and observed tsunami waves originated  by earthquake of 26 December, 
2004 showed complicated  temporal and spatial structure, since the initial wave generated 
by the  bottom uplift  had  multiple amplitude and frequency components. 
     Analysis of the recorded data demonstrated that the tsunami waves propagating 
southwestward across the Indian Ocean two hours after the main shock were noticeably 
dispersive (Kulikov, 2005). Dispersion effects can be significant for amplitude estimation 
in transoceanic tsunami propagation. This brings into question the accuracy of the model 
used for numerical simulations of tsunamis. Usually, tsunami models are based on the 
shallow water approximation which ignores the effect of linear wave dispersion. 
As the initial wave propagates, separation of the wave into spectral components with 
different frequencies and amplitudes occurs. Thus, the leading wave is followed by a 
train of waves formed in its tail. In coastal regions this train of waves interacts with the 
leading wave’s runup, drawdown and reflection from shelf or land, introducing strong 
modification to leading wave effects. We aim, therefore, to infer the role of the dispersion 
effects in tsunami wave modification. 
     Often populated areas along coasts are located in low-lying and flat regions that 
together with natural and man made obstacles make the retreat of the flood caused by the 
first tsunami wave very slow. Under this situation, subsequent waves as they shallow 
often ride over a region already flooded by the first wave allowing these waves to 
impinge on structures, often with higher sea level and speed.  
     The multiple wave  phenomenon was observed throughout the Sri Lanka coast, as 
described in  John Headland’s report at the ASCE web page 
(http://www.asce.org/page/?id=53.). The first few rows of houses were destroyed by the 
tsunami wave, and acted to dissipate it. Interior houses, as a result, were not as 
extensively damaged. In another location along the coast; one witness said. ’It wasn’t one 
wave, it came in great surges, each one deeper than the last and pushing the water that 
had come in before in front of it’. In fact, most witnesses talked of three main waves. The 
first knocked them off their feet, the second picked them up and carried them, often at up 
to  km/h, and the third, the most powerful, bore them high, up to 15  m in some places 
or sucked them under. To explain these phenomena is not a simple task, since a train of 
waves approaching a particular coastal region, in addition to the transformation it may 
have experienced by dispersion effects, could be composed of a combination of waves 
coming from different parts of the source or it may be that these waves have been 
diverted by the ocean bathymetry or transformed by a submerged bar. Since this study 
intends to investigate the role of dispersion effects in tsunami calculations and its 
possible implication in propagation and runup, simplified model setups are used 
(one/two-dimensional) so that   tsunami physics and behavior can be better explained.  

50

     Several studies have highlighted the importance of dispersion effect in tsunami 
propagation. Sato (1996), in the numerical calculation of the 1993 Okushiri Island 
tsunami, found that local tsunami enhancement can be explained by a series of dispersive 
waves which ride on the main tsunami front. Ortiz et al. (2001) suggested that the 
frequency dispersion mechanism, as prescribed by dispersive theory plays the main role 
in propagation of large and medium-size tsunamis. Heinrich et al. (1998) using the 
Boussinesq approach, found that the effect of dispersion can be significant. Imamura et 

Science of Tsunami Hazards, Vol. 25, No. 1, page 43 (2006)



al. (1988, 1990) and Liu et al. (1995) also considered the effect to be important.  
     In tsunami calculations the dispersive effects are usually considered through the 
Boussinesq equation, Dunbar et al. (1991); Madsen et al. (1999). Their numerical 
solutions require small space steps and often implicit schemes are used due to stringent 
numerical stability requirement (Shigihara, 2004). As the second order approximation to 
the numerical schemes leads to an error of approximation proportional to the third 
derivative, and since the dispersion terms in the Boussinesq equation also depend on the 
third derivative, Imamura and Shuto (1989) constructed a numerical scheme which uses 
numerical dispersion to simulate physical dispersion. This scheme was improved and 
applied to the propagation of tsunamis over slowly varying topography by Yoon (2002), 
thus opening the possibility to account for the dispersion of distant tsunamis. In the runup 
region, at the steep wave front where the tsunami wave starts to break, the dispersive 
effects due to physical processes tend to interact with the short wave numerical instability 
generating turbulent motion. To suppress such oscillations, Goto and Shuto (1983) and 
Sato (1996) suggested introduction of the eddy diffusivity term. The nonlinear shallow 
water (NLSW, nondispersive), the nonlinear Boussinesq (NLB) and the full Navier-
Stokes equations aided by the volume of fluid method to track the water surface (FNS-
VOF) are important tools for the tsunami investigations. Using these tools and hydraulic 
experiments Fujima (2001) examined the wave transformation on large bottom obstacles. 
He pointed out that NLB approach when compared with experiments and FNS-VOF 
approach, reproduces the wave dispersion effects well.  
     This study aims to reproduce the Indian Ocean Tsunami (IOT) of Dec. 26, 2004 in its 
initial stage (two hours of tsunami wave propagation). With the help of three different 
numerical tools for tsunami calculation we intend to uncover some of the implications of 
dispersion effects in tsunami propagation and runup. The study is organized as follows: 
first, a brief description of the models formulation and their numerical schemes is 
presented. Afterwards, several numerical experiments are described based on initial 
conditions for free surface deformations. Then, model results are compared against each 
other. Finally, observations and model results are analyzed to draw conclusion on the 
spatial and temporal distributions of the free surface.  

NUMERICAL METHODS 

     For the numerical computation three case studies have been carried out a) one-
dimension: the channel case; b) two-dimension: the Bay of Bengal case; c) one-
dimension Yala/Banda-Aceh cases. In case a) an imaginary channel along a given 
transect  is chosen.  A study is made  for validation and comparison of the models (NLB 
and FNS-VOF)  to show dispersive properties of tsunami and limitations of  the NLSW 
approach. In case b) a small domain which encompasses the south part of the Bay of 
Bengal is used for the numerical simulations. Comparisons are made between NLB and 
NLSW models to uncover dispersive effects. In case c)  simplified studies in which one-
dimensional channels are used again to reveal wave runup of dispersive waves. The 
NLSW and NLB models are used in these cases, and initial conditions at the open side of 
the channels are taken from the two-dimensional models results.  
     In all numerical simulation, the bathymetry is taken From GEBCO data bank using 

 min resolution. The bathymetric profile along transects (one-dimensional cases) are 
obtained by linear interpolation from the GEBCO data bank. Initial condition for the free 
1

Science of Tsunami Hazards, Vol. 25, No. 1, page 44 (2006)



surface deformation is detailed in Kowalik et al. (2005) according to the static dislocation 
formulae from Okada (1985).  

Description of NLSW Model 

     The nonlinear shallow water equations of motion and continuity are taken in the 
following form (Kowalik and Murty 1993a)  

 2 21 0u u uu v g ru u v
t x y x D

ζ
ρ

∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂
,  (1) 

 

 2 21 0v v vu v g rv u v
t x y y D

ζ
ρ

∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂
,  (2) 

 

 0uD vD
t x y
ζ∂ ∂ ∂
+ + =

∂ ∂ ∂
,  (3) 

where ρ  is the water density,  and v  are vertically averaged velocity components 
along 

u
x  and  directions respectively,  is the mean water depth, y H ζ  is the sea level, 

(D )Hζ= +  is the total depth,  is the friction coefficient, and  is the gravitational 
acceleration.  

r g

     Above equations are solved numerically by using a staggered grid (C grid) in space as 
shown in Fig. 1. Velocity locations for  and v  are denoted by horizontal and vertical 
bars respectively. The  velocity grid points are offset from the  velocity grid points. 
Sea level locations are denoted by crosses. Velocity components and sea level (u ,  and 

u
u v

v
ζ ) are organized into triplets as shown by the triangles. The depth is defined at the sea 
level location. To resolve the nonlinear terms in the equations of motion the  velocity is 
needed at the  locations and vice versa. To visualize how the averaged values are 
constructed, dark-gray and plain-gray circles are introduced at the velocity locations. The 
values of velocity marked by dark-gray circles, when they are averaged, will define the 
average of v  velocity at the u  location. The average of  velocity at this location is  

v
u

v
 1 1 10 25( )j k j k j k j kv v v v v, − , − , − , −= . + + + .1  
In a similar way the average of  velocities (plain-gray circles) at the  point is  u v
 1 1 1 10 25( )j k j k j k j ku u u u u+ , + , + , + ,= . + + + .  
The grid size (space step) along the E-W direction is xh , and the distance is xjh , index 

. The space step along the N-S direction is 1j = ,… yh  and the distance is ykh , index 

.  1k …= ,
The solution of Eqs. (1-3) is usually advanced in time by the two-time-level numerical 
scheme (Kowalik and Murty, 1993a). For the spatial derivatives a second order 
approximation is constructed, thus  

 1 2 2
1

1

2( ) ( ) (
( )

m m m m m m m
j k j k j k j k j k j km m

x j k j k

gT Tu u ru u vh D D
ζ ζ

ρ
+
, , , − , , ,

− , ,

= − − − +
+

)  

 1 1( ) (
m m
p m m m mn

j k j k j k j k
x x

u T u Tu u u u
h h

), − , + , ,− − − −  
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k
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 (5) 

 
 
where index  stands for the time stepping, T  is the time step. , 

,  and 
m 0 5( )p j k ju u u, ,= . + | |

0 5( )n j k j k 0 5( )n j k jv v v, ,= . − | |

u

 are velocity switches 
used in the upwind/downwind method to turn on/off the upstream/downstream advective 
term derivatives, i.e., if  then u0j ku , > p i j,=  and 0nu = ; conversely, if  then 

 and .  
0j ku , <

0pu = n ju u ,= k

     For the large scale computations the upwind/downwind method is essential as it 
displays strong stability. In order to obtain a higher order approximation in space for the 
continuity equation the upwind/downwind numerical scheme proposed by Mader (2004) 
is expanded. The numerical scheme has been improved by an additional interpolation 
between grid points based on the method of characteristic. Then, the continuity equation 
becomes  

 1
1( )m m

j k j k x j k x j k
x

T flux flux
h

ζ ζ+
, , , + , ,= − − ,    

 1( y j k y j k
y

T flux flux
h , , , , −− − ),  (6) 

 
where  

 11 1 1 ( )
2

j k j km m m
p p x n n x j kx j k

H H
u u uflux ζ ζ , − ,+ + +

, , ,, ,

+
= + + ,  (7) 

 

 1
1(0 5 ) (0 5 )m m m

p x p j k p j k
x x

Tu u
h h

1 mTζ ζ+
, − ,= . + + . − ,ζ+

,  (8) 

 

 1
1(0 5 ) (0 5 )m m m

n x n j k n j k
x x

Tu u
h h

1 mTζ ζ ζ+ +
, − ,= . + + . − ,,  (9) 

 

 11 1 1 ( )
2

j k j km m m
p p y n n y j ky j k

H H
v v vflux ζ ζ , , ++ + +

, , ,, ,

+
= + + ,  (10) 
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1(0 5 ) (0 5 )m m m m

p y p j k p j k
y y

Tv v
h h

ζ ζ+ +
, ,= . + + . −

T ζ , +  (11) 

 

 1 1
1(0 5 ) (0 5 )m m m m

n y n j k n j k
y y

Tv v
h h

ζ ζ+ +
, ,= . + + . −

T ζ , + . (12) 

 
The numerical scheme given by Eqs. (7-12) is close to the second order of approximation 
in space. 
For the runup condition the following step is taken, i.e., when the dry point  is 
located to the left of the wet point 

( 1)wetj −

wetj ,  

 1 1If ( ) then
wet wet wet wetj j j jH u uζ − +>− = ,  

 
(Kowalik and Murty, 1993b).  

Description of NLB Model 

Equations of motion of the nonlinear Boussinesq model are taken from Shigihara et al. 
(2005),  

 2 21u u uu v g ru u v
t x y x D x

ζ ψ
ρ

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂
,  (13) 

  
 

 2 21v v vu v g rv u v
t x y y D y

ζ ψ
ρ

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂
,  (14) 

where the potential function ψ  is defined as  

 
2 2 2

(
3

H u v )
x t y t

ψ ∂ ∂
= + .

∂ ∂ ∂ ∂
 (15) 

By substituting Eqs. (13) and (14) into Eq. (15) and neglecting both, nonlinear and 
bottom friction terms from the equations of motion, yields the Poisson equation for the 
solution of ψ  as  

 
2 2 2 2 2 2

2 2 2 2( ) (
3 3

H gH )
x y x y
ψ ψ ζ ζψ∂ ∂ ∂ ∂

+ − = +
∂ ∂ ∂ ∂

.  (16) 

 
Thus, the dispersive wave propagation results in an elliptical problem, where the potential 
function ψ  plays the role of pressure corrector. Applying the same notation used in the 
previous numerical model, the finite difference forms of the equations of motion are  

 1
1 1 1( ) ( ) (

m m
pm m m m m m m mn

j k j k j k j k j k j k j k j k
x x x

u TgT u Tu u u u u u
h h h

ζ ζ+
, , , − , , − , + , ,= − − − − − − )  

 1 1( ) ( )
u m u m
p m m m mn

j k j k j k j k
y y

T Tv vu u u u
h h

, ,

, , − , + ,− − − −  
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Numerical form of the continuity equation (Eq. 3) is,  

 1 1 1 1 1
1 1 1 1( ) (m m m u m m u m m v m m v m

j k j k j k j k j k j k j k j k j k j k
x y

T Tu D u D v D v D
h h

ζ ζ+ + , + , + , +
, , + , + , , , , , , − , −= − − − − ).,  (19) 

The above explicit numerical scheme uses Eqs. (17-19) to compute velocity and sea 
level, where Eq. (15) serves to compute the potential function. This computational 
process is unstable since a new stability condition arises due to dispersive terms. It 
requires that the space step used for the numerical computation, xh  (assuming x yh h= ), 
must be  (Shigihara, 2004). As the average depth of the Global Ocean is close 
to 4km the above condition introduces relatively large space steps which lead to poor 
spatial resolution and numerical instability. To circumvent stability requirements an 
implicit numerical scheme to derive the potential function has been constructed 
(Shigihara et al. 2005). The numerical scheme uses Poisson equation (Eq. 16) in the 
following implicit numerical form:  

1 5xh > . H

 
2

2 1 1 1 1 1
1 1 1 12 2 2 2 2 2

2 1 1 1 1 1 1[1 ( )] ( )
3 3

j km m m m
j k j k j k j k j k j k

x y x x y y

H
H

h h h h h h
ψ ψ ψ ψ,+ + + +

, , + , − , , + , −+ + − + + + mψ +  

 
2

1 1 1 1
1 1 12 2 2 2 2 2

1 1 1 1 1 1[2( ) ]
3

j k m m m m m
j k j k j k j k j k

x y x x y y

gH
h h h h h h

ζ ζ ζ ζ ζ, + + + +
, + , − , , + ,= + − − − − 1

1
+
− .  (20) 

 
In order to solve the Poisson equation, the boundary condition for ψ  is constructed from 
Eq. (15) in the following way:  

 
2

1 1 1 1 1
1 1 1

1 1[ ( ) ( )]
3

j km m m m m m m m
j k j k j k j k j k j k j k j k j k

x y

H
u u u u v v v v

T h h 1 .mψ ,+ + + + +
, + , , + , , , , − ,= − − + + − − + , −  (21) 

 

Description FNS-VOF Model 

     The FNS-VOF approach is used in this study to visualize differences and validate 
NLSW and NLB numerical models. The FNS equations include the vertical component 
of velocity/acceleration. The FNS-VOF approach solves a transient two-dimensional 
incompressible fluid flow with free surface. The finite difference solutions of the 
incompressible FNS equations are obtained on a rectilinear mesh.  
Equation of continuity for incompressible fluid  
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 0∇⋅ =u  (22) 
and the momentum equation  

 21( ) p
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∇ +

∂
u u u u ,g  (23) 

are solved in a rectangular system of coordinates. Where ( )x y t, ,u  is the velocity vector, 
ρ  is the fluid density,  is the pressure, p ν  is the kinematic viscosity,  is the 
gravitational acceleration and  is the time. Solution of the equations is constructed using 
the two-step method, Chorin (1968); Harlow and Welch (1965). The time discretization 
of the momentum equation is given by  

g
t

 
1

1 21( )
m m

m mm
m p

T νρ

+
+−

= − − ∇ + +⋅∇ ∇
u u gu u u  (24) 

and it is broken up into two steps as follows:  

 2( )
m

m m

T ν
−

= − +⋅∇ ∇
u u

+ gu u u
%

 (25) 

 

 
1

11 .
m

m
m p

T ρ

+
+−

= − ∇
u u%  (26) 

 
Eq. (26) and the continuity equation (Eq. 22) can be combined into a single Poisson 
equation for the solution of the pressure as  

 11[ ]m
m p

Tρ
+ ∇ ⋅

∇ ⋅ ∇ = .u%  (27) 

 
The free surface of the fluid is described by the discrete VOF function, introduced by  
Nichols and Hirt (1975) and Nichols et al. (1980). The Fluid is advected as a Lagrangian 
invariant, propagating according to  

 ( )dF F F
dt t

0∂
= + ⋅∇ =
∂

u .

)

 (28) 

The scalar field (F x t,r  is defined as:  

 
1 in the fluid

( ) 0 1 at the free surface
0 in the void

F x t F
,⎧

⎪, = < < ,⎨
⎪ .⎩

r  

 

OBSERVATIONS AND DISCUSSIONS 

     First,  above numerical models are applied to a simplified case for the IOT (one-
dimensional channel case) along transect A-A depicted in Fig. 2. This numerical 
experiment is intended to visualize dispersive effects using FNS-VOF model and test the 
NLSW (nondispersive) and NLB (dispersive) approaches. Transect A-A extends from 

E, N to 81 E, S with total length of  Km. At both sides, the 
channel is bounded by walls, so the  lateral interaction  of waves  is restricted, therefore,  
neither the wave is radiated from the channel nor outside signal is propagated into 

95 48. o 4 93. o 13. o 1 8. o 1745:
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channel.  Model parameters and CPU time for the numerical computation are given in 
Table 1. The chosen time step ensures that water particles travel the computational cell in 
at least three time steps. In all models, several spatial resolutions have been applied to 
verify numerical convergence.  
 

Model xδ   zδ   tδ   Num. of 
cells  

CPU time 

NLSW (Trans. A-A) 100  m  —–  0 2.  s  157059   30  min  
NLB            "  100  m  —–  0 2.  s  157059   5  h   
FNS-VOF     "  (5 875)− (0 2 40) m − (0 08 0 8) m − .  s 800000   72  h   . .

 

Table 1. Parameters for numerical computations along transect A-A (channel case) 
     Fig. 3 shows a series of free surface snapshots of the first 2 h of the IOT propagation 
based on the initial condition given by Kowalik et al. (2005). General features of the 
wave evolution agreed very well in all approaches. However, some differences in 
reproducing the dispersion phenomena become more noticeable as time advances. For 
instance, at time  40 min, the wave dispersion is evident according to NLB and FNS-
VOF results. A train of waves which comprises multiple amplitudes and frequency 
components is formed immediately behind the leading wave. Major wave features are 
well reproduced by the NLSW method with exception of the train of waves. The leading 
NLSW wave is taller and shifted forward in space in relation to the dispersive solutions. 
The nondispersive NLSW approach overpredicts by  ~28% the wave height at time 2 h 
5 min. A slight advance in time (2 min 15 s) of the NLSW leading wave crest is observed 
as well. However, the wave front tip of the NLSW leading wave matches very well to its 
counterpart. This reaffirms the use of NLSW as an accurate approximation for 
determining the tsunami arrival time.  

≥

     NLB and FNS-VOF model results agreed better in reproducing the  detailed features 
such as the spatial and temporal distributions of the leading dispersive wave. However 
the NLB train which follows the leading wave is shifted forward in time with respect to 
FNS-VOF train. The shift increases in time as the wave diminishes in amplitude and 
length as shown in the zoomed window of Fig. 3. Values of (2 )kh L hπ= /  for the first, 
second and third waves at time 2 h 5 min according to FNS-VOF results are , 0 17. 0 46.  
and  respectively (  m). Their respective wavelengths are =[179 ,  and 

]km, measured from trough to trough. Although the second and third waves fall into 
category of intermediate water wave regime (0 3

0 56. 4810h = L 89
65

1 3 14kh. < < . ) the approximation of the 
dispersive term in the NLB model gives accurate  estimate  of the wave speed because the  
value of  (Wei and Kirby, 1995).  In comparison to the linear dispersion relation, 
the error is less than 1%. Although the second, third and subsequent NLB model waves 
shift slightly forward in relation to the FNS-VOF results, the NLB model predicts well 
the wave height, wave length and number of waves in the wave train. 

1kh <

  
     The study is extended to visualize the wave dispersion effects in two-dimensions in 
the Bay of Bengal basin. Now, the computational domain is bounded by the window 

E, 1 N to 100 E, N. In this experiment, only NLB and NLSW models are used. 
At all open boundaries wave radiation condition is applied. Model parameters and CPU 
78o o o 14o
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time for the numerical computation are given in Table 2.  
 

Model xδ   yδ   tδ  Num. of 
cells  

CPU time   

NLSW  1  min 1  min 3  s 1249600  16.0  min 
NLB  1  min 1  min 3  s 1249600  1 5.  h   

 

Table 2. Parameters for the numerical computation for the two-dimensional case 
(Bay of Bengal) 

     Fig. 4 shows wave patterns at time 1 h 40 min using NLSW and NLB methods. Due to 
the dispersion effects the NLB model shows a series of wave behind the leading wave, 
therefore, wave patterns are significantly different from that of NLSW model. From the 
NLB model result, it is seen that length of the wave train in western region is longer than 
in the eastern region (close to Thailand and Indonesia). As  Eqs. (13) and (14) suggest   
the magnitude of the dispersive term is proportional to the square of water depth, 
therefore, the dispersion effect in the western region ( 4H = -  km) is stronger than that 
in the eastern region (which is only of several hundred meters deep). Additionally the 
dispersion effect in the western region is enhanced through  the longer distance of 
propagation.  

5

     Fig. 5 shows temporal variation of the free surface obtained by  NLSW and NLB 
models at  locations of numerical gauges given in Fig. 2. Again, over all agreement 
between nondispersive and dispersive models is very good. The same dispersive pattern  
is observed as in the channel  along transect A-A. At gauge 1, agreement between 
dispersive and nondispersive solutions is excellent due to the proximity of the gauge to 
the tsunami source, as  dispersive waves do not have time to develop. On the other hand, 
the sea level recorded at gauges 2 and 3, features dispersive waves since the gauges are 
located farther away from the tsunami source. The leading wave height is overpredicted 
again by the NLSW solution  by 22% at gauge 2 and by 14% at gauge 3. A shift in time 
between leading wave crests is noticed as well; 50 s at gauge 2 and 1 min 5 s at gauge 3. 
Note the good agreement of the NLSW and NLB leading wave front tip in all gauge 
records. 
  
     The last experiment is intended to visualize the implication of dispersive effects on the 
runup. Two transects, B-B and C-C, have been chosen as indicated Fig. 2. One transect  
is  in the Northwest of Sumatra (close to Banda Aceh); this location was struck by a 
"near-field" tsunami. In contrast, the other one across the Bay of Bengal, Sri Lanka (close 
to Yala), experienced a "far-field" tsunami. The rapid arrival of the tsunami to the near-
field location in approximately 15 to 20 min, is juxtaposed  with  a longer arrival time of 
around 2 h to the far-field location.   The numerical domains extend from E, 

N to 95 E, N (transect B-B), and from 
95 09. o

5 47. o 3. o 5 47. o 81 78. o E, 6 35. o N to E, 6 381 45. o 5. o N 
(transect C-C). At the offshore end of the channels the temporal variations of the free 
surface from the two-dimensional computation are established as boundary forcing. This 
experiment is intended to investigate the implication of dispersive effects on the runup, 
therefore, the two-dimensional contribution is avoided by constructing channels to 
visualize the approach of the wave train to the shoreline. Unfortunately, the 1 min 
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resolution is  too coarse to represent a runup. For the purpose of this experiment a fine 
grid size was constructed  in the models, using linear interpolation, to  fill the gaps in  the 
available bathymetry. A 10 m spatial resolution is applied in both experiments. Model 
parameters and CPU time for numerical computations are given in Table 3.  
 

Model xδ  yδ  tδ   Num. of 
cells  

CPU time  

   NLSW (Trans.B-B)  10  m --  0 2.  s 22680   4  min   
   NLB             "  10  m --  0 2.  s 22680   30  min   
   NLSW (Trans.C-C)  10  m --  0 2.  s 34020  5  min   
   NLB             "  10  m --  0 2.  s 34020  40  min   

 

Table 3. Parameters for the numerical computation for one-dimensional cases: 
Banda Aceh, Sumatra (transect B-B) and Yala, Sri Lanka (transect C-C). 

     Figs. 6, 7 and 8 show tsunami propagation and runup in the coastal regions obtained 
by the NLSW and NLB models. In both experiments the computed maximum runup 
heights calculated by both methods are approximately 10 m. These results agree with the 
observed maximum runup in Yala (http://www.drs.dpri.kyoto-u.ac.jp/sumatra/srilanka-
ut/SriLankaU_Teng.html), but underestimate the observed one in Banda Aceh 
(http://www.eri.u-tokyo.ac.jp/namegaya/sumatera/surveylog/eindex.htm). 
      Fig. 6 shows snapshots of the runup at Banda Aceh at extreme stages. Regardless of 
the models, free surface profiles, timing and runup heights match very well. Fig. 7 shows 
tsunami propagation on the continental shelf at Yala, Sri Lanka. As the wave approaches 
to the shoreline the dispersive effects are enhanced as revealed through the NLB solution.  
Subsequent snapshots at the shoreline (Fig. 8) show that the runup heights of the leading 
wave are almost the same in both models. However, Fig. 8c (3 h 7 min) shows that a 
higher runup is obtained by the NLB solution (37 min after leading wave runup), which is 
about 60% higher than the runup obtained by the NLSW model. Thus, dispersion 
consideration in numerical models is necessary for accurate prediction, since dispersion 
can produce significant differences in coastal runup. Dispersive waves interacting with 
the natural frequencies of the continental shelf, bay or harbor  tend more often to generate 
resonance as compared to the long waves.   

CONCLUSIONS 

     We have compared three approaches to compute tsunami, i.e., the nonlinear shallow 
water (NLSW nondispersive), the nonlinear Boussinesq (NLB) and the full Navier-
Stokes aided by the volume of fluid method (FNS-VOF).  The FNS-VOF method gives a 
frame of reference to validate the NLB and NLSW solutions. Since this approach 
introduces the  vertical fluid velocity/acceleration and column-wise discretization, more 
accurate results are expected. However this method still requires higher computational 
resources, often not available for practical tsunami computations.  
     Comparison of the three different methods shows that for practical purpose the NLSW 
model results are quite reliable, since this model gives consistent results with its 
counterparts. The NLSW approach is very attractive nowadays for tsunami calculation 
because this method have very low computational cost and maximum wave height and 
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runup are often overpredicted, thus increasing safety factor.  The NLSW results are 
useful for preliminary hazard assessment, where a simple and quick estimation of 
maximum wave height, maximum run-up and locations of maxima are required. 
Determination of the wave front tip location for the IOT is excellent. This reaffirms its 
use as an accurate method for determining the tsunami arrival time.  
     Qualitatively and quantitatively the wave fronts reproduced by the NLB and FNS-
VOF solutions share many common features. For the longer integration time the 
similarity holds only for the main maximum, because the phase differences between 
secondary maxima increase with travel time (Fig. 3). Tsunami patterns away from the 
main front  including runup have been reproduced by all three methods quite well and the 
sea level differences are quite small. The dispersion consideration in the numerical 
models is necessary for accurate prediction since it can produce significant differences in 
coastal runup when the wave front depicted in Fig. 7 will impinge on the coast creating 
complicated patterns of oscillations as compared to the NLSW solution given in Fig. 8. 
Such oscillations arriving to  the continental shelf, bays or harbors may enhance the 
tsunami oscillations through the resonance. As Ortiz et al. (2001) pointed out the 
dispersion mechanism is not clearly established from the coastal observations, because 
such data are strongly influenced by the local bathymetry. Does IOT provide such 
validation? The general comparisons between data and NLSW model results given for 
IOT by Kowalik et al. (2005), Lay et al. (2005) and  Hirata et al. (2005) are quite good 
even though these are nondispersive models.  Preliminary results from the dispersive 
model of IOT presented by Watts et al. (2005) still require comparison with the NLSW. 
The computations in the nearshore regions will shed farther information on the dispersive 
versus nondispersive processes in IOT, however to undertake this direction  fine 
resolution bathymetry is needed.  
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Figure 1.  Spatial grid distribution . 
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Figure 2.  Indian Ocean bathymetry, initial free surface deformation and location of numerical 
gauges and transects 
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Figure 3. Tsunami propagation along transect A-A  computed by three different methods 
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Figure 4.  Comparison of water surface computed at 1h 40min from the onset of the earthquake: a) 
NLB model results, and b) NLSW model results 
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Figure 5. Comparison of water level at different locations (given in Fig. 2) obtained by NLB and 
NLSW models 
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Figure 6. Comparison of tsunami runup/rundown at Banda Aceh, Sumatra (transect B-B), 
obtained by one-dimensional NLB and NLSW models. 
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Figure 7. Comparison of tsunami propagation on the continental shelf at Yala, Sri Lanka (transect 

C-C), obtained by one-dimensional NLB and NLSW models. 
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Figure 8. Comparison of tsunami runup/rundown at Yala, Sri Lanka (transect C-C), obtained by 

one-dimensional NLB and NLSW models. 
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