MODEL PREDICTIONS OF GULF AND SOUTHERN ATLANTIC COAST TSUNAMI IMPACTS FROM A DISTRIBUTION OF SOURCES

Bill Knight West Coast and Alaska Tsunami Warning Center Palmer, AK, USA

ABSTRACT

The West Coast and Alaska Tsunami Warning Center now issues tsunami warnings for the US Gulf and US /Canadian Atlantic coasts. Because there is less historical data for these regions than for the Pacific, numerical models have been used to make predictions of wave amplitudes, travel time, and "reach". Hypothetical tsunami sources are placed in the Atlantic, the Gulf of Mexico, and in the Caribbean, with the resulting waves advanced forward in time 12 to 24 hours. Model results are presented in relation to warning center procedures.

INTRODUCTION

Four initial sea level disturbances were created using Okada's formulas (1985) in conjunction with their associated hypothetical earthquakes. The model earthquakes are also truly "model" in the sense that they do not necessarily correspond to expected magnitude, likelihood of rupture, or precise location on known thrust faults. They have been chosen in part to excite various ocean basins and to present worst case conditions.

The 2D depth averaged model developed at the University of Alaska, Fairbanks (Kowalik et al., 2005) has been used to propagate the initial disturbance to all points along the US Gulf and Atlantic coasts. All computations were done on a uniform 15 second mesh, and 15 second bathymetric / elevation data was used wherever it was available (NOAA / NGDC). In regions where no data was available, bathymetry values were interpolated from the 1 minute Gebco dataset. The model space was a 40 degree square with radiation conditions applied in the open ocean and run-up conditions at the coast.

The results presented here were obtained from inspection of approximately 130 synthetic mareograms along the Gulf and Atlantic coasts generated during the model runs. The source summary is shown in Table 1. Numbers also correspond to locations on the model domain map on the following page (Fig 1).

Table I – source summary

1)	Puerto Rico trench:	66W, 18N, Mw 9.0		
2)	Caribbean Sea:	85W, 21N, Mw 8.2 –		
	translated from the Swan fault to mouth of Gulf near Cancun			
3)	North Panama Deformed Belt:	66W, 12N, Mw 9.0		
4)	Gulf of Mexico, offshore of Veracruz:	95W, 20N, Mw 8.2 (no		
	known credible source)			

The model sources are aligned with local strike where applicable.

Figure I – model domain with source locations (depths and elevations in Meters)

Source #1 results and discussion:

Typical synthetic mareograms are shown below in Figure 2.

Science of Tsunami Hazards, Vol. 24, No. 5, page 306 (2006)

Atlantic and Gulf mareograms form distinct groups that show unique features. Gulf amplitudes are low (under 25 cm) and have leading edge depressions. Wave arrivals along the Atlantic are all leading edge elevations and the amplitudes can be higher (over 150 cm). The leading edge difference can be explained by the orientation of the source.

Initial uplift is dipolar as shown in figure 3 above (red is uplifted ocean, blue is down dropped).

Propagation into the Gulf takes two routes, one through the Caribbean and the other through the Straits of Florida. The Caribbean route is faster by about 1 hour, and the first impact is therefore the leading edge depression. Energy transfer into the Gulf is

computed with the energy flux vector $\rho d \vec{V} (g\zeta + \frac{1}{2}V^2)$ (Kowalik & Murty, 1993).

Evaluating this flux across both the Caribbean and the Straits of Florida shows that more energy moves into the Gulf through the latter pathway, even though it arrives later. This is important because the duration of wave action in the Gulf is increased and because travel times computed from first arrivals may be misleading.

Science of Tsunami hazards, Vol. 24, No. 5, page 307 (2006)

Evaluation of the energy fluxes was done along the planes shown in Figure 4a below.

Energy loss was also computed in the part of the Caribbean Sea labeled "dissipation region" by integration of the bottom friction term over the region and up to time t. Results from the three flux planes along with dissipation are plotted in Figure 4b below. Energy flow into the Atlantic was about 10X larger than the energy entering the Caribbean through the magenta plane, and was not included in the plot. Note that the reduction of energy into the Gulf through the Caribbean is well explained by the dissipation curve. Flux through the Straits of Florida winds up being larger than what enters through the Gulf / Caribbean pathway. A complete mareogram summary for

Source 1 is shown in Table 2 on the following page.

	<u> </u>	Travel Time (hr-	Peak	Initial	Period (hr-		
Location	Region	min)	Height(cm)	Motion	min)		
Brownsville TX	Gulf	6hours 22min	Δ	depression	2 hours 3 min		
Corpus Christi TX	Gulf	6 hours 45 min	4	depression	1 hour18 min		
Galveston TX	Gulf	8 hours 2 min	6	depression	1 hour 58 min		
High Island TX	Gulf	8 hours 30 min	3	depression	1 hour 57 min		
Eugene Island LA	Gulf	8 hous 10 min	3	depression	1 hour 56 min		
Port Fourchon LA	Gulf	5 hours 52 min	10	depression	2 hours 3 min		
Grand Isle LA	Gulf	6 hours	12	depression	1 hour 38 min		
Waveland MS	Gulf	10 hours 36 min	1	depression			
Biloxi MS	Gulf	8 hours 28 min	5	depression	2 hours 5 min		
MS AL Border	Gulf	9 hours 35 min	3	depression	2 hours 2 min		
Destin FL	Gulf	5 hours 38 min	7	depression	1 hour 55 min		
Suwanee FL	Gulf	8 hours 37 min	3	depression	2 hours 2 min		
Panama Beach FL	Gulf	5 hours 47 min	5	depression	1 hour 54 min		
Panama City FL	Gulf	6 hours 20 min	11	depression	2 hours 2 min		
Clearwater Bc, Fl	Gulf	6 hours 58 min	8	depression	1 hour 6 min		
St Petersburg FL	Gulf	7 hours 48 min	5	depression	2 hours 56 min		
Tampa Fl	Gulf	8 hours 28 min	5	depression	2 hours 28 min		
Port Manatee El	Gulf	7 hours 28 min	5	depression	1 hour 28 min		
Bonita FI	Gulf	7 hours 37 min	25	depression	1 hour 50 min		
Naples Fl	Gulf	7 hours 28 min	23	depression	1 hour		
	Cull	7 110013 20 11111	20	depression	THOUT		
Virginia Key FL	Atlantic	2 hours 57 min	15	elevation	49 min		
Ocean Reef FL	Atlantic	3 hours 13 min	28	elevation	1 hour 40 min		
Jupiter FL	Atlantic	2 hours 47 min	54	elevation	1 hour 2 min		
Flagler FL	Atlantic	4 hours 18 min	117	elevation	1 hour 10 min		
Vaca Kev FL	Atlantic	4 hours	13	elevation	1 hour 11 min		
St Simons GA	Atlantic	5 hours 30 min	40	elevation	1 hour 13 min		
Altamaha GA	Atlantic	5 hours 33 min	47	elevation	1 hour 15 min		
So Santee SC	Atlantic	4 hours 32 min	77	elevation	1 hour 22 min		
Springmaid SC	Atlantic	4 hours 57 min	129	elevation	1 hour 8 min		
Charleston SC	Atlantic	4 hours 57 min	49	elevation	1 hour 15 min		
Surf City NC	Atlantic	4 hours 23 min	112	elevation	1 hour 8 min		
Beaufort NC	Atlantic	3 hours 38 min	147	elevation	45 min		
Oregon Inlet NC	Atlantic	3 hours 45 min	38	elevation	42 min		
Duck NC	Atlantic	3 hours 57 min	140	elevation	drained		
Currituck NC	Atlantic	A bours 15 min	102	elevation	36 min		
Chesapeake B VA	Atlantic	7 hours 12 min	6	elevation	46 min		
	Atlantic	10 hours 28 min	3	elevation	~ 2 hours		
Cape Henlopen DE	Atlantic	4 hours 52 min	64	elevation	42 min		
Cape May, NJ	Atlantic	5 bours	68	elevation	42 min		
Atlantic City, NJ	Atlantic	4 bours 45 min	155	elevation	45 min		
Montauk NY	Atlantic	4 hours 45 min	68	elevation	45 min		
Bar Harbor ME	Atlantic	5 hours 22 min	71	olovation	6 min		
	Allantic	5 110015 55 11111	71	elevation	0 mm		
D41424 (32.4N, 73W)	Atlantic	1 hour 52 min	35	elevation			
D41420 (23 3N 67 6W)	Atlantic	32 min	131	elevation			
D41421 (234N 639W)	Atlantic	31 min	175	elevation			
D7-2 (38 6N 68 W)	Atlantic	2 hours 10 min	78	elevation			
D42407 (23.4N 63.9W)	Caribbean	10 min	-61	depression			
D8-1 (25.4N 86.8M/)	Gulf	3 hours 27 min	-01	depression			
201 (20.414, 00.044)	Cuil			0001000011			
Bermuda	Atlantic	1 hour 57 min	511	elevation	12 min		
Limetree_StCroix	Caribbean	1 min	240	depression	15 min		
Punta_Guayanilla	Caribbean	0 min	173	elevation	21 min		

Table 2: Source 1 mareogram summary:

Source2-4 results:

The remaining source mareograms are presented qualitatively as indicator plots.

Source 2 –mareogram summary (source in Caribbean Sea near Cancun)

Note that the Gulf amplitudes are all under 30 cm, reflecting in part the fact that significant wave energy is lost to bottom friction in the Caribbean Sea.

Source 3 mareogram summary (source near Venezuela)

The largest Atlantic coast amplitudes are under 50 cm, with the Gulf coast run-ups reduced from these values to a maximum of 15 cm. The wave energy is well dissipated by bottom friction and spread in time by multiple reflections in the Caribbean, resulting in lower than expected amplitudes both on the Gulf and the Atlantic coasts.

Science of Tsunami Hazards, Vol. 24, No. 5, page 310 (2006)

Source 4 mareogram summary (Gulf source near Veracruz).

Note the amplitudes are all under 35 cm, and there is very little leakage of wave energy into the Atlantic.

SUMMARY

The Atlantic and Gulf coasts are nearly independent since the hydrodynamic connection between basins is through the narrow Straits of Florida and through the Caribbean, where bottom friction losses appear to be large. Sources outside the Gulf are not expected to create a tsunami threatening to the Gulf coast. Thus the Gulf coast would not need to be included in a warning for a non-Gulf source (unless a Gulf DART buoy records an unexpected large amplitude wave). For Atlantic sources, warnings could be issued for the Atlantic coast alone. Both Gulf and Atlantic coasts appeared to be well shielded from the large model Caribbean source. This would argue for warnings to be issued only with extreme caution for this source region.

The Puerto Rico trench source is the most threatening of the modeled scenarios, but even here, the Gulf should not need to be placed in a warning. The short travel time to Atlantic DART buoys, along with the large amplitude signal and short travel time to Bermuda should provide timely check points for a possible expansion of a tsunami warning to the northern Atlantic states.

REFERENCES

Okada, Y: SURFACE DEFORMATION DUE TO SHEAR AND TENSILE FAULTS IN A HALF SPACE, 1985 Bulletin of the Seismological Society of America (75) 4

Kowalik, Z, Knight, W., Logan, T., and Whitmore, P.: 2005, NUMERICAL MODELING OF THE GLOBAL TSUNAMI: Indonesian Tsunami of 26 December 2004. *Science of Tsunami Hazards*, 23(1), 40-56

Kowalik, Z. and Murty, T.S.: 1993, *Numerical Modeling of Ocean Dynamics*, World Scientific

<u>http://www.ngdc.noaa.gov/mgg/coastal/coastal.html</u> (download site for US coastal bathymetry and elevation)